
Noname manuscript No.
(will be inserted by the editor)

On the Relationship between Similar Requirements
and Similar Software
A Case Study in the Railway Domain

This preprint has not undergone peer review (when applicable) or any post-submission
improvements or corrections. The Version of Record of this article is to be published in Requirements
Engineering, and is (will be) available online at https://doi.org/10.1007/s00766-021-00370-4. This document is
made available under a CC BY licence.

Muhammad Abbas · Alessio Ferrari · Anas Shatnawi · Eduard Enoiu ·
Mehrdad Saadatmand · Daniel Sundmark

Received: date / Accepted: 28 Dec 2021

Abstract [Context] Recommender systems for requ-

irements are typically built on the assumption that sim-

ilar requirements can be used as proxies to retrieve

similar software. When a stakeholder proposes a new

requirement, natural language processing (NLP)-based

similarity metrics can be exploited to retrieve exist-

ing requirements, and in turn, identify previously de-

veloped code. [Question/problem] Several NLP ap-

proaches for similarity computation between require-

ments are available. However, there is little empirical

evidence on their effectiveness for code retrieval. [Met-

hod] This study compares different NLP approaches,

from lexical ones to semantic, deep-learning techniques,

and correlates the similarity among requirements with

the similarity of their associated software. The eval-

This work has been supported by and received funding from
the ITEA3 XIVT, and KK Foundation’s ARRAY project.

M. Abbas (Q)
RISE Research Institutes of Sweden, Väster̊as, Sweden
E-mail: muhammad.abbas@ri.se

A. Ferrari (Q)
CNR-ISTI, Pisa, Italy
E-mail: alessio.ferrari@isti.cnr.it

A. Shatnawi
Berger-Levrault, Montpellier, France
E-mail: anas.shatnawi@berger-levrault.com

E. Enoiu
Mälardalen University, Väster̊as, Sweden
E-mail: eduard.paul.enoiu@mdh.se

M. Saadatmand
RISE Research Institutes of Sweden, Väster̊as, Sweden
E-mail: mehrdad.saadatmand@ri.se

D. Sundmark
Mälardalen University, Väster̊as, Sweden
E-mail: daniel.sundmark@mdh.se

uation is conducted on real-world requirements from

two industrial projects from a railway company. Specif-

ically, the most similar pairs of requirements across two

industrial projects are automatically identified using

six language models. Then, the trace links between re-

quirements and software are used to identify the soft-

ware pairs associated with each requirements pair. The

software similarity between pairs is then automatically

computed with JPLag. Finally, the correlation between

requirements similarity and software similarity is eval-

uated to see which language model shows the highest

correlation and is thus more appropriate for code re-

trieval. In addition, we perform a focus group with

members of the company to collect qualitative data.

[Results] Results show a moderately positive correla-

tion between requirements similarity and software sim-

ilarity, with the pre-trained deep learning-based BERT

language model with preprocessing outperforming the

other models. Practitioners confirm that requirements

similarity is generally regarded as a proxy for software

similarity. However, they also highlight that additional

aspects come into play when deciding software reuse,

e.g., domain/project knowledge, information coming fr-

om test cases, and trace links. [Contribution] Our

work is among the first ones to explore the relationship

between requirements and software similarity from a

quantitative and qualitative standpoint. This can be

useful not only in recommender systems but also in

other requirements engineering tasks in which similar-

ity computation is relevant, such as tracing and change

impact analysis.

Keywords Requirements Similarity · Software

Similarity · Correlation · Perception of similarity ·
Language Models

https://doi.org/10.1007/s00766-021-00370-4

2 Muhammad Abbas et al.

1 Introduction

Recommender systems have been widely studied in re-

quirements engineering (RE) [34,69,46], and several di-

verse applications of this paradigm have been proposed

in the literature. These include stakeholder recommen-

dation for requirements discussions [19], refactoring rec-

ommendation based on feature requests [67] and bid

management [34]. One typical application scenario of

recommender systems in RE is related to requirements

retrieval [50,23]. Specifically, when a new requirement

is proposed, the requirements analyst looks for reuse

opportunities and compares the new proposal with ex-

isting requirements in order to adapt their previously

developed models and implementations [56,83]. This

can be supported by content-based recommender sys-

tems [60], which, given a new requirement, return the

most similar ones in a historical database of product

releases, together with the associated artifacts. The ra-

tionale of the approach is that similar requirements can

be used as proxies to retrieve similar software, i.e., code

that can be adapted with little effort to address the new

needs.

Different NLP techniques exist to compute require-

ments similarity, and the recent emergence of novel

NLP language models provides promising options [94].

In the field of content-based recommender systems, wid-

ely used approaches are the traditional algebraic mod-

els, including vector space with tf-idf and latent se-

mantic indexing (LSI) [16]. Recent works have also ex-

perimented with more advanced strategies, exploiting

neural networks [91,45], and using transformers for lan-

guage representation, as, e.g., BERT [59]. However, none

of the works studies the fundamental assumption of

content-based recommender systems, which is that hi-

ghly similar requirements are linked to similar imple-

mentations. Furthermore, none of the works system-

atically compares the different available techniques to

compute requirements similarity in the context of code

retrieval. Therefore, it is unclear (1) to which extent

automatically computed requirements similarity corre-

lates with software similarity and (2) what are the most

effective techniques to support requirements similarity

computation in a way that is optimized for code re-

trieval. Furthermore, (3) little is known about the view-

point of practitioners on this matter, as most of the

works focus on experimenting with automatic solutions,

rather than investigating real-world practices [94,15].

This paper aims to empirically study the problem

in the context of the requirements of Alstom Trans-

port AB (Alstom), a world-leading railway company,

which aims to improve its code reuse process by means

of requirement-based software retrieval. To study the

relationship between requirements similarity and soft-

ware similarity in this setting, we consider 254 real-

world requirements related to two Power Propulsion

Control (PPC) projects. We consider different state-

of-the-art language models to semantically represent

the requirements and support similarity computation,

namely the traditional tf-idf, the Jaccard Similarity In-

dex (JSI) [61], and the more advanced Doc2Vec [58],

FastText [14], Bidirectional Encoder Representations

from Transformers (BERT) [30], and the Universal Sen-

tence Encoder (USE) [20]. Our choice of language mod-

els covers representative seminal models from lexical

approaches (JSI) to information retrieval (tf-idf), and

to word2vec-based (Doc2Vec, FastText) and Deep Learn-

ing (DL)-based models (BERT, and USE). We comple-

ment this quantitative analysis with a focus group in-

volving participants from two teams at the company,

i.e., the PPC team and the Train Control and Manage-

ment System (TCMS) team. Specifically, the data from

the quantitative analysis are used to trigger discussion

around the topic of requirements-based software reuse.

Our results show that, in our context, on average,

the deep learning-based BERT model with pre-processi-

ng is the one that leads to the highest correlation with

the software similarity, computed with JPLag [75]. Fur-

thermore, we show that the correlation between re-

quirements similarity and code similarity is moderately

high for BERT and tf-idf with pre-processing. Fast-

Text, USE and JSI without pre-processing also show

a moderately high correlation. This provides some ev-

idence that similar implementations realize similar re-

quirements in the context of the considered case study.

On the other hand, it also suggests that there is further

space for research about novel methods to retrieve sim-

ilar software that goes beyond requirements similarity.

The evidence is confirmed by the viewpoint of prac-

titioners, who clearly state that similar requirements

must be related to similar software; otherwise, some-

thing might have gone wrong in the development pro-

cess. On the other hand, they also notice that require-

ments are only the starting point for code reuse. Do-

main/project knowledge, conversations involving differ-

ent profiles, analysis of trace links, inspection of test

cases, and other aspects play a crucial role in deciding

reuse opportunities.

The work presented in this paper is an extension of

an earlier conference contribution [1]. With respect to

the previous work, we made the following extensions:

(i) we performed a focus group to collect rich quali-

tative data on the topic of the research, and we thus

provide evidence from the voice of practitioners about

requirements-based code reuse; (ii) we added two more

NLP metrics to measure requirements similarity, a lex-

On the Relationship between Similar Requirements and Similar Software 3

ical one (JSI) and a deep learning-based one (USE), so

as to cover a wider range of types of techniques used

in the literature [25,29]; (iii) we extended the analysis

of the related works to position our contribution in RE

considering other tasks in which similarity computation

is essential, including traceability, and change impact

analysis.

The rest of the paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 presents the

background of the requirements similarity approaches

used in this paper. Section 4 discusses the research de-

sign, with context, research questions, and procedures.

In Section 5, we present the results, and in Section 6 we

discuss the main takeaway messages. Threats to valid-

ity are presented in Section 7. We conclude the paper

and draw future directions in Section 8.

2 Related Work

In software engineering, several approaches rely on sim-

ilarity measurements to analyze relationships between

different software artifacts. Typical goals include fea-

ture identification [95], feature location [32], architec-

ture recovery [83], reusable service identification [82]

and clone detection [92].

In the RE field, similarity computation normally in-

volves the usage of NLP techniques to represent the

requirements [94], as these are typically written in Nat-

ural Language (NL) [36,37,54]. Similarity computation

is key for many typical requirements management tasks,

including traceability [22,15,45,42], identification of eq-

uivalent requirements [33], change impact analysis [16,

9], glossary terms extraction and grouping [7], and ar-

tifact retrieval through automatic recommender sys-

tems [3,23,34,69,19,67,31,46,78]. In the following, we

compare our research with representative works in RE,

focusing in particular on the topics of traceability, chan-

ge impact analysis, and recommender systems, which

are closely related to our work, as they deal with both

requirements and software similarity. Also, we give at-

tention to the code clone detection topic due to its rela-

tion with the source code similarly measurement used

in our study.

Traceability. Requirements tracing consists in linking

related artifacts of the software process, such as re-

quirements, models, code, tests, etc., to facilitate reuse,

external assessment and other management activities.

Keeping trace links aligned during software evolution

is particularly challenging, and information retrieval

(IR) approaches have been experimented with to sup-

port this task [22,89]. In this regard, Borg et al. [16]

performed a systematic mapping of IR approaches to

software traceability. The study considers 79 publica-

tions. The majority of them are concerned with tracing

requirements to requirements (37, 47%) and require-

ments to code (32, 41%). The study shows that works

typically use algebraic models—i.e., the vector space

model and latent semantic indexing (LSI)—to support

artifact representation and similarity computation be-

tween artifacts. The tf-idf index is by far the most com-

mon weighting scheme. Less common is experimenta-

tion with probabilistic and language-based models. The

study also observes the need for more industrial case

studies on the topic.

Recently, other traceability studies focus on more

advanced strategies for similarity computation. Among

others, Guo et al. [45] experiment with deep learning

techniques through the usage of word embedding and

recurrent neural network (RNN). Their results show

that these semantic-laden techniques outperform clas-

sical vector space and LSI models. Another research in

this direction is performed by Wang et al. [91], who

use artificial neural networks (multi-layer perceptron,

MLP) to overcome the problem of polysemy that af-

fects classical lexical techniques for similarity compu-

tation [26]. Further enhancement in the accuracy of

similarity computation for tracing is shown by Lin et

al. [59], who use Bidirectional Encoder Representations

from Transformers (BERT) language models to trace

between GIT issues—which can be regarded as forms

of requirements—and commits in open source projects.

Their work shows that BERT appears to rule-out tra-

ditional techniques in terms of performance (over 60%

with respect to the vector space model). In addition, it

also addresses the problem of limited annotated data

that affect the performance of RNNs used by Guo et
al. [45], thanks to the transfer learning paradigm [70].

Change Impact Analysis. Change impact analysis (CIA)

consists in estimating the consequences of a certain

change in one or more artifacts produced during the

software process, including requirements, in terms of

refactoring effort for other artifacts. This can be based

on novel requirements, identified bugs, or other sources

of change [13]. Representative works in this field are

those by Arora et al. [9] and Borg et al. [16]. Arora

et al. [9] use the SEMILAR (SEMantic simILARity)

toolkit [80] to experiment with different similarity met-

rics and select the best combinations to support inter-

requirements CIA. Their work suggests that the best

metrics are the Levhenstein distance [61], a syntactic

metric, combined with Path [80], a semantic one. Borg

et al. [16] reuse previous CIA information coming from

an issue tracking system. This is used to build a graph

that links artifacts—e.g., requirements, test cases—ba-

4 Muhammad Abbas et al.

sed on their previous changes identified by the issue

tracking system. Given a novel issue, similar issues are

detected in the knowledge base, and artifacts poten-

tially impacted by the change are retrieved. Issue sim-

ilarity is evaluated by means of the Lucene library [47]

with the traditional LSI, which was used also by previ-

ous studies in the field (e.g., ImpactMiner from Gethers

et al. [43]).

CIA is a task that heavily relies on trace links, as

one change in a software artifact needs to be propa-

gated on the related ones, and trace links can be a

relevant source to channel the ripple-effect [13]. Aung

et al. [10], presents a recent literature review on auto-

matic trace links recovery for the purpose of CIA. In line

with works focused on traceability previously surveyed

by Borg et al. [15], the authors confirm that the most

common language models to support similarity compu-

tation are vector space with tf-idf and LSI, Jensen &

Shannon models (JSMs) [5], and Latent Dirichlet Allo-

cation (LDA) [52,71]. The study also shows that CIA

mostly focuses on relations between textual artifacts

(e.g., requirements, issues, features) and source code,

followed by inter-requirements relations.

Recommender Systems. One of the seminal contribu-

tions on recommender systems in RE is the work by

Natt och Dag et al. [23], where the tf-idf language

model and cosine similarity are used to support re-

trieval of previous requirements on a large industrial

dataset. The authors developed a tool called ReqSim-

ile, which reaches a recall of around 50% for the top-

10 requirements. This is estimated to save consider-

able time in the given industrial context when com-

pared to keyword-based search. Dumitru et al. [31] de-

scribe an approach for feature recommendation based

on online product descriptions. With the support of

association rule mining and kNN (nearest neighbor)

clustering, they use vector-based representation with

tf-idf. Given a novel product description, the approach

mines Softpedia.com, and proposes possible features

based on similar products in the market. A combination

of kNN clustering and tf-idf is also used by Castro-

Herrera et al. [19] to recommend relevant stakehold-

ers to requirements discussion forums based on their

expertise. Similarity measures are computed based on

expressed stakeholder needs and different stakeholder

preferences.

The OpenReq EU project [69,34] aims to take a

more holistic perspective, with recommendations in el-

icitation, specification, and analysis, and also includes

a proposal for bid management. The researchers plan

to use content-based recommender systems for require-

ments and adopt vector-space language models to sup-

port similarity computation. The project has released

a specific service for similarity computation among re-

quirements, which is based on the tf-idf metrics. The

service is made available on GitHub1.

On a different note, Nyamawe et. al. [67,68] recom-

mend refactorings based on new feature requests. The

recommended refactorings are based on the history of

the previously requested features, applied refactorings,

and code smells information. The approach is applied

to issue tracking systems, and, as in previous works,

the tf-idf vector-space model is used to compute the

similarity between feature requests.

With a focus on requirements dependencies, Samer

et al. [81] compare different approaches to detect whe-

ther two requirements have a dependency relationship

or not. The authors use tf-idf and Pointwise Mutual

Information (PMI) to support similarity computation,

aided with machine learning algorithms. The best per-

formance in this context is achieved with PMI and Ran-

dom Forest classification. Still on recommendation sys-

tems for requirements dependencies, Ninaus et al. [66]

developed Intellireq, an interactive platform that uses

OpenThesaurus to improve the measurement of seman-

tic similarity.

Finally, in a recent contribution [3], we used require-

ments descriptions to recommend the reuse of their im-

plementation for new requirements. Compared to our

previous work [3], which was dedicated to the whole

task of software reuse, the current investigation is ex-

plicitly focusing on exploring the relationship between

requirements similarity and the actual software similar-

ity.

Clone Detection. Clone Detection Techniques (CDTs)

aim to identify code clones, i.e., identical or similar

code pieces that are reused within the same applica-

tion or across different ones. To measure the similarity

between code pieces, CDTs rely on several similarity

metrics that can be calculated based on their textual,

syntactical, or semantic information [88]. Ragkhitwet-

sagul et al. [76] perform a comparison between 30 code

similarity approaches used to identify code clones. The

textual similarity is measured by comparing code pieces

in terms of text and string. Normally, they are identi-

fied as code clones if they have identical textual con-

tent [86], i.e., Type 1 of code cloning. Ito et al. [51]

develop a web-based application of their approach that

measures the code similarity based on the hash signa-

tures identified from the code using the b-bit min-wise

hashing algorithm. The syntactical similarity is calcu-

lated based on sub-tree comparison techniques between

the Abstract Syntax Trees (ASTs) extracted from code

1 https://github.com/OpenReqEU/similarity-detection

https://github.com/OpenReqEU/similarity-detection

On the Relationship between Similar Requirements and Similar Software 5

pieces. Narasimhan et al. [65] use the CDT Eclipse plu-

gin to extract ASTs from the C/C++ source code.

Then, they rely on the Robust Tree Edit Distance Al-

gorithm (RTED) proposed by Pawlik et al. [72] to iden-

tify syntactical similar code clones that can be merged

into a more reusable piece of code using the abstraction

pattern. To understand variability in android families,

Shatnawi et al. [84] rely on ASTs to identify code clones

allowing to analyze the commonality and variability be-

tween android applications of the same family. Based

on their approach, a parameterized tool is provided to

identify code clones at different levels of abstraction in

which practitioners can configure different software sim-

ilarity metrics. The semantic similarity is used to iden-

tify code clones that have different textual and syntacti-

cal representations but have similar behavior when the

corresponding programs are executed, i.e., Type 4 code

cloning. Statically, this type of similarity can be calcu-

lated using the control and data-flow analysis of pro-

gram dependency graph reverse-engineered from code

pieces [90]. In our empirical study, to measure the soft-

ware similarity between the code pieces implementing

similar requirements, we rely on JPLag [75] because it

is based on a syntactical-based similarity metric that is

compatible with the type of similarity realized in our

case studies, it is freely and publicly available and can

be executed on local machines which allow us to comply

with our confidentiality agreement with the company.

Contribution. To the best of our knowledge, the work

presented in this paper is the first one that compares

the most recent state-of-the-art NLP techniques for re-

quirements similarity computation in terms of their cor-

relation with software similarity. The usage of advanced

techniques based on deep learning and transfer learning

follows the developments from Guo et al. [45] and Lin et

al. [59]. In addition, we address the need for case stud-

ies observed, among others, by the survey of Borg et

al. [15] in the field of traceability. Our work can be use-

ful also for the CIA area since Aung et al. [10] observed

that most works rely on relationships between textual

artifacts and source code, as in our case. Furthermore,

works on the analysis of requirements dependencies can

also benefit from our work, as the similarity is one of

the most common dependencies identified in the empir-

ical study by Deshpande et al. [27]. These contributions

are particularly relevant also for the whole NLP for the

RE area, as the recent survey of Zhao et al. [94] clearly

highlights the limited experimentation with advanced

NLP techniques in RE research, as well as the limited

set of industrial studies.

3 Background: Measuring Requirements

Similarity

Several metrics exist for measuring similarity between

natural language artifacts in general and requirements

in the specific [61]. Some metrics are purely lexical be-

cause they measure the term-based surface similarity

between requirements. Others are more semantic-laden

and aim to measure the similarity of the meaning of

the requirements. In general, before measuring require-

ments similarity, one needs to define or learn a language

model, which can be regarded as a statistical represen-

tation of the frequency and relationship between words

in a language [12,73]. Given the text of a requirement,

a language model can be used to map it into a numer-

ical vector. Similarity among requirements boils down

to measuring distance among vectors, and this is typi-

cally performed using the cosine similarity [61], which

measures the cosine of the angle between the vectors.

The effectiveness of the similarity computed with co-

sine is heavily dependent on the choice of the language

model used for computing feature vectors.

In this paper, we use six language models for simi-

larity computation among requirements. The selected

language models are Jaccard Similarity Index (JSI),

Term Frequency Inverse Document Frequency (tf-idf),

Doc2Vec, FastText, Bidirectional Encoder Representa-

tions from Transformers (BERT), and Universal Sen-

tence Encoder (USE). Note that JSI is not a language

model but rather a string-level similarity metric. How-

ever, we refer to it as a language model in the remainder

of this paper for the simplicity of reporting.

These six language models are selected as represen-
tative models from the following seminal categories.

– Lexical. This is a basic category, which considers

the terms solely as they appear in the text of the

sentences (i.e., requirements in our case). To include

a representative lexical similarity metric, we include

JSI due to its promising performance in software

clustering [25].

– IR-based language models. This category includes

measures that consider lexical aspects of require-

ments in relation to the lexical aspects of other re-

quirements in a repository, as typical in an IR sce-

nario. We include the traditional tf-idf as it is the

most widely used IR-based language model in RE [94].

– word2vec-based language models. This category in-

cludes all language models that enrich terms rep-

resentation with semantics based on techniques in-

spired by the word2vec algorithm. To represent the

prominent word2vec-based language models, we in-

clude the widely used Doc2Vec and FastText.

6 Muhammad Abbas et al.

– DL-based language models. DL-based language mod-

els provide a contextual representation of expres-

sions utilizing deep learning architectures. DL-based

language models are emerging in software engineer-

ing and are the de-facto standards in NLP. To rep-

resent the DL-based language models in our study,

we include the emerging BERT and USE language

models. BERT and USE have been chosen as they

have shown promising results in different software

engineering tasks (e.g., [59,44]).

In the following, we briefly describe the six language

models used in our paper.

Jaccard Similarity Index (JSI) is a numerical mea-

surement of the intersection of common terms between

two requirements divided by the union of the terms.

More formally, given two requirements r and q, their

JSI is computed as:

JSI(r, q) =
|(T (r) ∩ T (q))|
|(T (r) ∪ T (q)|)

where T (r) and T (q) represent the set of terms in r

and q respectively.

Term Frequency Inverse Document Frequency is ba-

sed on the tf-idf score from IR. This language model ex-

tracts term-matrix from the input requirements where

the terms are treated as features, and their frequencies

represent the weights of these features. Minimum and

maximum term frequencies can be defined to drop irrel-

evant features such as potential stop-words. The term-

matrix also considers the co-occurring terms (n-grams)

as features. The term matrix is usually of very high di-

mensions, and thus dimensionality reduction techniques

are used to select the top features from the matrix. Such

an approach is useful when requirements share common

terms.

Doc2Vec is based on the word2vec approach, where

every word in a document is mapped to a vector of real

numbers using a neural network. The vectors are con-

catenated to get vectors for the entire document, pre-

serving the contextual and semantic information. For

example, words like “simple” and “easy” would result

in similar vectors. This helps in inferring feature vectors

of fixed length for a variable length of requirements.

FastText is another model based on word2vec, where

instead of learning word vectors directly, it utilizes the

character level n-grams. For example, the word “run”

would be divided into n-grams such as “ru,” “run,”

“un”. Such a model is useful for cases where shorter

words are used. In addition, FastText also understands

suffixes (such as verb ending) and prefixes (such as un-

happy, where un is the prefix) better because it utilizes

character-level information.

Bidirectional Encoder Representations from Trans-

formers (BERT) is a recent breakthrough in language

understanding researches. It is a bi-directional model

based on the Transformer encoder architecture that

also considers positional and contextual information of

words. BERT is known for the so-called contextual em-

bedding and is trained on BooksCorpus and the English

Wikipedia with 2,500M words. Such a model could be

handy for capturing the semantic of the requirements.

Universal Sentence Encoder (USE) uses the Deep

Averaging Network (DAN)-based encoder for learning

the representation of text. USE is optimized for learning

phrase and sentence-level representation for the tasks

of text classification and semantic similarity. Therefore,

USE is an ideal option for semantic similarity computa-

tion in short paragraphs of text, such as requirements.

4 Study Design

This section outlines the research method used to ob-

tain the results. This work can be regarded as an ex-

ploratory case study [79], oriented to understand the

relationship between requirements and their associated

software in the specific context of a railway company.

We designed this study following the guidelines of Ru-

neson et al. [79] for conducting and reporting case stud-

ies. The study is designed to collect both quantitative

and qualitative data to answer the research questions.

Quantitative data is collected from two safety-critical

projects at Alstom. To collect qualitative insights, we

designed a focus group session involving Alstom engi-

neers.

4.1 Objectives and Research Questions

Our main goal is to study the relationship between

requirements similarity and software similarity in the

context of requirements-based code reuse. To this end,

we want to use quantitative and qualitative lenses to

understand if an association can be identified between

requirements similarity and software similarity so that

similar requirements can be assumed to be realized by

similar software. To achieve this objective, we define

the following research questions (RQs).

RQ1: To what extent is requirements similarity

correlated with the similarity of their linked soft-

ware in the context of requirements-based software

reuse?

RQ2: How do practitioners in the studied set-

ting perceive the association between similar re-

On the Relationship between Similar Requirements and Similar Software 7

Tender Doc.

3

Internal
Standard Reqs.

Req. Analysis 1

Customer Reqs.

uses

4 Reqs. Reuse5

Project-specific
Reqs.

2 3

Power Propulsion Control (PPC)
Reqs.

Requirements
Repo.

Developement

Fig. 1: The Overall Process of Receiving Requirements from a Customer

quirements and their software in the context of

requirements-based code reuse?

In RQ1, we focus on the association between au-

tomatically computed similarity for both the require-

ments and the software. Furthermore, since the focus

is on requirements-based software reuse, we limit the

analysis to similar requirements, as non-similar require-

ments are of less interest in requirements-based software

reuse. RQ1 addresses the problem from a quantitative

standpoint. To answer RQ1, we first measure require-

ments similarity between two projects with six different

language models. We consider Jaccard Similarity Index

(JSI), tf-idf (TF), Doc2Vec (DW), FastText (FT), B-

ERT, and USE for computing requirements similarity.

Then, we consider the software that implements simi-

lar requirements by means of explicit trace links, and

we use JPLag to measure the similarity between the

software. Finally, we compute the correlation between

the different requirements similarity measures and the

software similarity.

It is worth noting that no data about the actual sim-

ilarity between requirements and software pairs, as eval-

uated by humans, was available beforehand as ground

truth. The only data available in our data-set are the

requirements, the software realizing those requirements,

and the trace links between requirements and their im-

plementation. We use the trace links to identify if, given

two highly similar requirements pairs, the software link-

ed to the requirements is also similar. For both require-

ments and software, the similarity is always automati-

cally computed. More formally, given two highly simi-

lar requirements r1, r2, according to a language model,

and given s1, s2 as the software modules implementing

r1 and r2, respectively, we want to understand if s1 and

s2 are also highly similar, according to some automatic

similarity metric.

RQ2 addresses the problem from a qualitative stan-

dpoint and also aims to collect data about current prac-

tices and challenges in requirements-based software re-

use. To answer RQ2, we organize a focus group with

five practitioners from the company belonging to two

different teams. The two teams work on different types

of projects and have different requirements engineer-

ing practices. Thus, they are expected to provide dif-

ferent perspectives on the topic. Focus group research

is a well-accepted method in software engineering re-

search for the collection of qualitative insights [55]. The

focus group research experiences shared by Kontio et

al. [55] suggest having participants between 3 to 12.

Due to limited resources provided by the company, we

conducted our study using one focus group with five

experts and limited the time to one and a half hours.

The discussion in the focus group is triggered by nine

examples of pairs of similar requirements—identified

by the language models—and their corresponding soft-

ware. The focus group results are analyzed by means

of thematic analysis, and main themes are identified

concerning the current vision, common practices, and

challenges in requirements-based code reuse. It should

be noted that RQ2 was informally considered already

in initial communications with the company in general.

These preliminary interactions lead to RQ1 and previ-

ous work of part of the authors on software reuse within

the company [3]. However, in this work, we want to

treat the topic in a more rigorous way, possibly identi-

fying some indications to combine automatic similarity

measurements with heuristics derived from practition-

ers’ practice.

4.2 Study Context

The case study is carried out within Alstom, a rail-

way manufacturer. More specifically, the PPC software

development team of the company is considered for

quantitative data collection. We consider both the PPC

team and TCMS software team for qualitative data col-

lection. In the following, we describe the main charac-

teristics of the two teams.

8 Muhammad Abbas et al.

In the PPC team, the software is typically devel-

oped by reusing and adapting existing components from

an assets base [2]. The development of a new prod-

uct starts after receiving customer requirements either

from different teams at the company or from customers

directly. Since the system is a safety-critical software-

intensive system, the requirements for all existing prod-

ucts can be traced to the source code. The team consists

of more than 140 employees, developing safety-critical

products. Due to the safety-critical nature of the prod-

ucts, requirements are at the center of the development

process. Therefore, all the team members participate

in the requirements engineering activities. As shown

in Figure 1, requirement analysis and elicitation ac-

tivities are performed on tender documents to extract

the customer requirements. The PPC team receives the

customer requirements relevant to the propulsion sys-

tem. The input requirements (shown as “PPC reqs.”

in Figure 1) are internalized by reusing standard in-

ternal domain requirements (shown as “Internal Stan-

dard Reqs.” in Figure 1)and existing requirements from

other projects. This results in project-specific internal

requirements to be implemented, shown as “Project-

Specific Reqs.” in Figure 1.

To support reuse, the engineers also conduct manual

reuse analysis to identify existing similar customer re-

quirements, shown as “Reqs. Reuse” in Figure 1. Trace-

ability between the requirements and their implemen-

tation is maintained to comply with safety standards.

The team exploits existing traceability links of simi-

lar customer requirements to identify existing software

components that could be reused to realize the new

requirements. Note that the identification of similar re-

quirements is manual and is based on the experience of

the engineer. The decisions on the identification of sim-

ilar requirements in the manual reuse analysis process

are not explicitly documented. Therefore, we do not

have any historical record of requirements that have

been considered to be similar by engineers. Further-

more, this manual reuse analysis process is also heavily

dependent on the experience of engineers and is time-

consuming. Currently, the process is being automated

with a recommender system called VARA [3]. Like most

RE recommender systems, VARA is also based on the

assumption that similar requirements can be used as

proxies to retrieve similar software.

The TCMS team is responsible for developing the

execution platform for the train applications. In the

TCMS team, the requirements for the system come

from different teams at the company. Unlike the PPC

team, the TCMS team does not typically reuse software

but instead focuses on evolving the existing system de-

veloped by them. Indeed, this represents a lower-level

platform to support different applications, and can be

regarded as a cyber-physical operating system (an en-

hanced firmware) specific for trains. As such, it is reused

as a whole across different projects and needs to sup-

port different application-specific requirements without

the need to be changed. In this team, the requirements

are typically well-defined, following a structure of Given

(a statement that specifies the current system state),

When (a statement indicating the occurrence of a cer-

tain trigger), and Then (an action that is expected to

be performed by the system based on the trigger).

By involving the two teams in the focus group ses-

sion, we aim to collect diverse views from subjects with

varying requirements engineering and software reuse

practices.

code generation,
tracing

Source Coderealized byRequirements

Similar Pairs of
Reqs.

Source Code
Similarity

Similarity
Computation

source code, realizing the pairs of reqs.

Pairs Selector

Quantitative
Data

Source C
ode

Sim
ilarity PiplelineJPLag

Requirements-related tasks Source code-related tasks
Resulted data

Focus Group

Qualitative Data

cleaning

 Two Projects

Project Artifacts

Fig. 2: Data collection procedure

4.3 Data Collection Procedure (RQ1)

Figure 2 shows a high-level view of the procedure fol-

lowed for data collection. One project manager from

the company was involved in validating our procedure.

Two requirements documents belonging to two projects

On the Relationship between Similar Requirements and Similar Software 9

Table 1: Summary of the selected requirements with and without stop-words

Project Reqs. With stop words Without stop words SLOC
- - Words AVG. Words Words AVG. Words -
A 112 5823 51.9 3308 29.5 53.7K
B 142 10736 75.6 6478 45.6 61K

Total 254 16559 63.7 9786 37.5 114.7K

(shown in Figure 2, project A and B, in the follow-

ing) of the PPC team were considered for this study.

The projects were selected based on convenience of the

project manager to represent a potential scenario of

requirements-based software reuse. The requirement doc-

uments of the two projects were exported from a re-

quirements management tool, and therefore, non-requi-

rement-related information, such as headings and defi-

nitions, were also included. As shown in Figure 2, the

documents were subjected to cleaning to remove entries

that are not requirements but are additional support-

ing information, such as headings and definitions. As

a result, we consider all of the 254 requirements—112

from project A and 142 from project B—, selected out

of 265 entries. Table 1 outlines the data about the two

projects with information on requirements and lines of

code. As shown in Figure 2, the requirements were used

as an input to the language models for similarity com-

putation with and without pre-processing.

Pre-Processing. The pre-process pipeline takes the

requirements text and removes English stop-words from

it. After the removal of the stop-words, each token of

the requirement text is tagged with Part-of-speech (PO-

S) tags to guide the lemmatization. The pre-trained

spaCy model2 is used to lemmatize the text of the re-

quirement. The output of this pipeline is the pre-pro-

cessed text of the requirement. The dataset before and

after pre-processing is shown in Table 1, with the num-

ber of Software Lines of Code (SLOC) implementing

these requirements shown in the SLOC column. The

considered requirements are relatively long in terms of

words—about 64 words, on average. They are indeed

composed of more than one sentence, and they can

be considered to have a medium degree of abstraction.

They are technical requirements, so more low-level com-

pared to business requirements. At the same time, they

are still at the system level of abstraction, and they are

not broken down yet into module-level requirements,

which have a closer relation with the code. We consider

these requirements because they are the ones that the

engineers of the PPC team typically use for identifying

software reuse opportunities. A real requirement from

the dataset before and after pre-processing is shown be-

low.

2 Available Online at https://spacy.io/

Before Pre-Processing. The sign of the tractive/-

braking effort and the motor speed shall corre-

spond to the selected direction. A positive effort

reference shall indicate tractive effort and vehicle

movement in the required direction. A negative

sign shall indicate electrodynamic braking effort

and vehicle movement against the required direc-

tion.

After Pre-Processing. sign tractive brake effort

motor speed correspond select direction positive ef-

fort reference indicate tractive effort vehicle move-

ment require direction negative sign indicate elec-

trodynamic brake effort vehicle movement require

direction

In the remainder of this paper, the language model’s

variants where pre-processing is applied are referred to

as “p” followed by the name of the language model.

Language Models. In the following, we report the

settings for the language models applied in our study

and the specific implementations adopted in the case of

pre-trained models.

– JSI: the computation of the index has been imple-

mented by the authors.

– TF: the model is configured to build the term-do-

cument matrix on project B and then uses Princi-

pal Component Analysis (PCA) [53] to select the

top features based on the explained variance of 95%

from the matrix. The minimum and maximum doc-

ument frequencies are set to 6 and 0.5, respectively.

We consider n-grams ranging from 1 to 8.

– DW: the pre-trained Doc2Vec model available in

Gensim data3 is used. The model has a vector size of

300, with a minimum frequency set to 2. The model

is trained on the English Wikipedia documents re-

sulting in a vocabulary size of 35,556,952.

– FT: we use the pre-trained FT model available in

Gensim data. The model has a vector size of 100

with a minimum frequency set to 1. The model is

trained on the English Wikipedia documents on the

sub-word level. This results in a vocabulary size of

2,519,370. Both FT and DW are based on the skip-

3 Available at https://github.com/RaRe-Technologies/

gensim-data

https://spacy.io/
https://github.com/RaRe-Technologies/gensim-data
https://github.com/RaRe-Technologies/gensim-data

10 Muhammad Abbas et al.

gram neural network architecture [64], known for

contextual word prediction.

– BERT: we use the uncased pre-trained BERT model

by Google Research [30]. The model has 12 layers

and a vector size of 768. We use the BERT imple-

mentation available in BERT-as-a-service4.

– USE: we use the English pre-trained model avail-

able in the TensorFlow hub 5. The model is trained

on a variety of data sources and produces a feature

vector of 512 dimensions. The model does not re-

quire the input text to be pre-processed. However,

to make a fair comparison, we consider the results

with and without pre-processing.

Requirements Similarity Computation. We compute

the similarity and identify similar requirements based

on the different language models with and without pre-

processing. Note that for DW, FT, USE, and BERT, the

hyper-parameters are not in our control and come from

the original pre-trained models. The input to each lan-

guage model is a requirement, and the output is a vec-

tor. The similarity between each pair of requirements’

vectors is calculated using the cosine similarity metric

with the scipy implementation available in the library

scipy [77]. This procedure applies to all language mod-

els, except JSI. For JSI, a pair is created by computing

the index directly on the text of the requirements.

A pair of requirements is created by retrieving the

most similar requirement from project B for each re-

quirement in project A, as shown in Figure 2 as Similar

Pairs of Reqs. We have chosen this approach as project

B was developed before project A. Therefore, this set-

ting mimics a software retrieval scenario in which re-

quirements from project A are regarded as queries, and

those from project B are database items to be retrieved.

It should be noted that, as in a real retrieval scenario,

requirements considered as “most similar” according to

a particular metric may not actually be similar in prac-

tice from the user’s viewpoint. As in this study, we are

concerned with automatic requirements similarity; this

aspect is not currently addressed. Given the total num-

ber of requirements, we select the top-50 similar pairs

using cosine similarity. We choose the top-50 pairs be-

cause it is a suitable number for a sample size on which

to apply statistical tests, and, at the same time, does

not cover all possible, likely unrelated, requirements

pairs which would not be relevant in a retrieval scenario,

(see Section 5.1 for a more detailed explanation).

Code Generation. In the studied projects, the re-

quirements are realized in Simulink models, and code

4 Available Online at https://github.com/hanxiao/

bert-as-service
5 Available Online at https://tfhub.dev/google/

universal-sentence-encoder/4

is generated from the models for deployment. In our

setting, we compute software similarity on the gener-

ated code. Computing software similarity directly on

the Simulink models might lead to interesting results

and possibly different results. However, the tool sup-

port for computing Simulink model similarity is lim-

ited. In addition, in many scenarios such as safety cer-

tification and deployment, the central artifact is the

generated source code, as this will be the one that will

actually run on the system. Furthermore, in the studied

settings, engineers use Simulink Embedded Coder with

the MinGW64 gmake tool-chain to generate code from

the models for deployment and testing. Therefore, as

shown in Figure 2, we mimic the same setup and gen-

erated code6 from the Simulink model to be considered

for software similarity computation.. The related code

realizing each requirement was traced and moved to

directories tagged with the requirement’s identifiers to

ease the Source Code Similarity computation (shown

in Figure 2). In the future, we also aim to extend this

analysis to the similarity computed on Simulink mod-

els.

Source Code Similarity Computation. Our software

similarity pipeline takes pairs of requirement identifiers

as input, and copies each pair’s code to separate fold-

ers7. The pipeline then uses JPLag to compute the sim-

ilarity between the pair of source codes. To compute

the similarity between the source code of the two re-

quirements, we use the JPLag’s Java ARchive (JAR)

with C/C++ as a language parameter [75]. JPLag was

originally designed to detect plagiarism in students’ as-

signments and thus is able to detect semantically simi-

lar code. Note that JPLag ignores code comments and
white spaces and scans and parses the input programs

to convert the programs into string tokens. JPLag then

uses a greedy version of the string tiling algorithm to

compute the similarity between the tokens of the source

code. The similarity number is basically the percent-

age of similar tokens in the pairs of source codes. The

output of this pipeline is the software similarity values

between 0 and 100, later converted to a range between

0 and 1 for the input pairs.

The requirements similarity between pairs of requ-

irements and the software similarity for the correspond-

ing software modules act as the quantitative data col-

lected to answer RQ1.

6 The option “optimize for traceability” was selected in
Embedded Coder.
7 In our case, each folder for a pair contains two sub-folders

with code of each requirement.

 https://github.com/hanxiao/bert-as-service
 https://github.com/hanxiao/bert-as-service
https://tfhub.dev/google/universal-sentence-encoder/4
https://tfhub.dev/google/universal-sentence-encoder/4

On the Relationship between Similar Requirements and Similar Software 11

3.6.1 Planning of the session

produced
Session

Author 1Thematic
Map

Refined
Thematic Map

Final Thematic
Map

3.7.2 Thematic Analysis

3.6.2 Session and
Transcription

Audio

Pilot SessionDraft Instrument Refined Instrument

Review

Author 2

Final Instrument

Transcript

1 2 3

4

5

All Authors

6

Fig. 3: An overview of the focus group planning and execution

4.4 Data Analysis Procedure (RQ1)

First, we visualize the data in bar and scatter plots to

provide descriptive statistics on the software similar-

ity percentages among the identified pairs. Then, we

apply correlation analysis to quantify the relationship

between the two variables using R Studio8. As our data

are not normally distributed and we do not assume any

linear correlation between the variables, we use Spear-

man’s rank correlation coefficient test. We compute the

correlation from top-30 to top-50 requirement pairs to

see how the value of the correlation coefficient varies

as the similarity of the requirement pairs decreases. We

start from top-30 to have sufficient data to evaluate the

significance and stop at top-50 to avoid considering re-

quirements that are likely to be non-similar and thus
not relevant in a retrieval scenario.

4.5 Data Collection Procedure (RQ2)

A focus group session was planned to gather practi-

tioners’ perceptions on the association between simi-

lar requirements and similar software. The session was

conducted with five practitioners (engineers and archi-

tects), selected based on convenience. Two days before

the actual session, the practitioners were asked to have

a look at a document containing nine pairs of simi-

lar requirements and their software. The nine represen-

tative pairs (18 requirements and their software) were

manually hand-picked as a subset from the top-50 pairs

produced in the previous experiments. Specifically, we

selected representative pairs over the spectrum of sim-

ilarities from a lexical and semantic standpoint, e.g.,

8 RStudio, Available online, https://rstudio.com/

pairs with high/low requirement similarity values asso-

ciated with the software of high/low and low/high soft-

ware similarity values. The goal of the selection was not

to validate the measures but rather to have a sufficient

variety of cases to trigger discussion on the topic of the

association between similar requirements and similar

software.

The focus group session was conducted following the

guidelines proposed by Breen [18]. In the remainder of

this sub-section, we report our focus group protocol and

the thematic analysis process, also presented in Fig-

ure 3.

4.5.1 Planning of the session

Focus Group Instrument. To ensure smooth execution

of the session, a study plan was developed by all the

authors. The plan contained an initial instrument with

series of questions to be asked to the participants to

trigger discussions. In an online session, all the au-

thors reviewed and logically ordered the questions (see

step 1 of Figure 3). Based on the refined instrument,

the authors executed a pilot focus group session, as

shown in step 2 of Figure 3. After the pilot session,

some questions were re-ordered, and some questions

were marked optional due to time limitations. The fi-

nal instrument contained six questions targeted towards

RQ2, presented as follows.

Viewpoint on Similarity

– In a software reuse context, when do you con-

sider two requirements to be similar, and how

do you evaluate them?

12 Muhammad Abbas et al.

– In a software reuse context, when do you con-

sider two software to be similar, and how do

you evaluate that?

After the above questions, we show the selected pairs

and ask the following questions.

– Do you consider these software modules to be

similar? Also, how much refactoring is needed

for this software to satisfy the new requireme-

nt?

– Are similar requirements representative of sim-

ilar software?

Reuse Practices, Challenges, and Opportunities

– How do you identify reuse opportunities based

on requirements?

– What challenges do you face in manual/autom-

ated requirements-based software reuse?

Confidentiality. Three authors of this paper (first, fou-

rth and fifth) have a non-disclosure confidentiality agree-

ment with the company. Two of these authors (first

and fourth) recorded the session. At the start of the

session, consent was obtained from the participants for

audio recording. The audio recordings were transcribed,

anonymized, and subsequently deleted after the anal-

ysis. The participants were made anonymous, quotes

were made untraceable to the participants, but names

of tools and RE practices were kept un-anonymized due

to their relevance to the findings. The final report was

shared with a manager of the company to ensure that

the findings did not reveal any confidential information.

4.5.2 Session and Transcription.

Selected Participants. Five experts from the PPC and

TCMS teams were selected to participate in the session.

There was a diversity in the participants’ background,

gender, and role. The participants’ roles vary between

requirements engineering, development and testing, and

project managers. All the participants have at least ten

years of working experience in different software engi-

neering and development domains.

Session. The session was conducted as an online meet-

ing, which refers to step 3 of Figure 3. The fourth

author moderated the session, while the first and fifth

authors were tasked to ask follow-up questions. The ses-

sion started with an introduction to the objectives of

the study and the context of requirements-driven soft-

ware reuse. The session was planned to be one hour and

15 minutes, and a total of one hour of audio recording

was obtained after the presentation.

Transcription. The audio recording was transcribed by

the first author in a document containing more than five

thousand words on nine pages. This activity is repre-

sented by step 4 of Figure 3. During the transcription

process, we also anonymized personal and confidential

information. The transcript was also reviewed by the

moderator of the session.

4.6 Data Analysis Procedure (RQ2)

Qualitative data can be analyzed following a variety of

approaches. One commonly applied approach for qual-

itative data analysis is thematic analysis. In our case,

we applied thematic analysis on the transcript of our fo-

cus group, following standard guidelines by Braun and

Clarke [17]. Here, we present the commonly used termi-

nology, followed by an overview of the thematic analysis

process used in this paper:

– Theme is an abstraction of a commonly occurring

pattern within the qualitative data.

– Sub-Theme is an abstraction of a sub-pattern within

a theme.

– Codes acts as labels assigned to chunks of qualita-

tive data (such as sentences) for indexing.

– Thematic Map is a visual or tabular representation

of the extracted themes, sub-theme, and codes.

The thematic analysis was performed by the first au-

thor. Following the guidelines, the author first read the

0% 20% 40% 60% 80% 100%

JSI
pJSI
TF

pTF
DW

pDW
FT

pFT
BERT

pBERT
USE

pUSE

Percentage of the Top-50 Pairs

La
ng

ua
ge

 M
od

el
s

A (Soft. Sim.<60%)
B (Soft. Sim. >60% and <80%)
C (Soft. Sim.>80%)

Fig. 4: Software similarity distribution in the top-50

similar requirement pairs

On the Relationship between Similar Requirements and Similar Software 13

0.75 0.85 0.95

0.
3

0.
5

0.
7

0.
9

pTF

SS

0.4 0.6 0.8 1.0

0.
6

0.
7

0.
8

0.
9

1.
0

JSI

SS

0.3 0.5 0.7 0.9

0.
6

0.
7

0.
8

0.
9

1.
0

pJSI

SS

0.93 0.95 0.97 0.99

0.
6

0.
7

0.
8

0.
9

1.
0

BERT

SS

0.94 0.96 0.98 1.00

0.
5

0.
7

0.
9

pBERT

SS

0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

USE

SS

0.75 0.85 0.95

0.
6

0.
8

1.
0

TF

SS

0.96 0.98 1.00

0.
5

0.
7

0.
9

FT
SS

0.80 0.90

0.
6

0.
8

1.
0

DW

SS

0.95 0.97 0.99

0.
5

0.
7

0.
9

pFT

SS
0.70 0.80 0.90 1.00

0.
70

0.
80

0.
90

1.
00

pUSE
SS

0.94 0.96 0.98 1.00

0.
5

0.
7

0.
9

pBERT

SS

0.75 0.85 0.95

0.
6

0.
7

0.
8

0.
9

1.
0

pDW

SS

Fig. 5: Scatter plots of the requirements and software similarity

transcript to get more familiar with the data. Then cod-

ing on transcript was performed, and codes were also

linked to the themes and sub-themes identified during

the process. As shown in step 5 of Figure 3, the fourth

author reviewed and refined the final thematic map.
The refined thematic map was subjected to a final re-

view from all authors (step 6). Finally, the results

were compiled in a report (see Section 5).

5 Results

5.1 Quantitative Results (RQ1)

In this section, we present the quantitative data to an-

swer RQ1. First, we present the descriptive statistics,

and then we present the correlation analysis.

Descriptive Statistics. Figure 4 shows the distribu-

tion of software similarity among the top-50 similar

pairs of requirements, based on each language model.

To understand the results, for each language model,

we divided the selected pairs of requirements into three

classes based on the actual software similarity. The first

class represents the cases in which the retrieved soft-

ware shares less similarity (< 60% software similarity,

A). The second class represents cases in which the re-

trieved software share moderate similarity (between 60

and 80% between the software of the pairs, B), finally,

the third class represents cases in which the retrieved

software shares high similarity (> 80% similarity be-

tween the software of the pairs, C). The above classes

are defined to show the extent to which requirements

similarity can be used to recommend requirements-ba-

sed software reuse, and their definition is based on au-

thors’ own interpretation.

As shown in Figure 4, in all cases, in at least 60

percent of the pairs, the software similarity stays above

80 percent (i.e., class C). The USE language model re-

trieved no pairs with software similarity of less than

60%. In addition, the pUSE language model retrieved

the highest number of pairs in class C, with more than

80% of software similarity. On the other hand, the stri-

ng-level lexical similarity approach, JSI, retrieved only

one pair with software similarity of less than 60%.

Figure 5 presents a view of the association between

the requirements similarity and software similarity for

each language model. The requirements similarity is re-

ported on the X-Axis, while the software similarity is

plotted on Y-Axis and is calculated using JPLag. The

14 Muhammad Abbas et al.

JSI pJSI TF pTF DW pDW FT pFT BERT pBERT USE pUSE

Requirements Similarity (blue) Vs Software Similarity (purple)

Fig. 6: Requirements Similarity (blue) and their corresponding Software Similarity (SS, purple) for all pipelines

Table 2: Average Spearman’s rank Correlation Results for top-30 to top-50 most similar pairs with Moderate

correlation in bold text. The best pipeline (pBERT) is also reported in italic.

JSI TF DW FT BERT USE
Average rho (ρ) 0.5215 0.4659 0.3550 0.5938 0.3512 0.5223
Average p-value 0.0013 0.0039 0.0303 0.0002 0.0377 0.0010

pJSI pTF pDW pFT pBERT pUSE
Average rho (ρ) 0.4725 0.5807 0.3536 0.4419 0.6032 0.4422
Average p-value 0.0029 0.0001 0.0314 0.0056 7.61905e-05 0.0064

0,20

0,25

0,30

0,35

0,40

0,45

0,50

0,55

0,60

0,65

0,70

30 35 40 45 50

rh
o

Top-n Pairs

rho across Top 30 to 50 Pairs

JSI TF DW FT BERT USE
pJSI pTF pDW pFT pBERT pUSE

Fig. 7: Spearman’s rank correlation coefficient (rho)

across top-30 to top-50 pairs

blue line is the trendline between the two variables, giv-

ing insights into the relationship between them. In all

cases, as can be seen from the trendlines, there could be

a positive association between the two variables. How-

ever, for some language models such as BERT, and

FT, the variation between its similarity and software

similarity is very high. For example, many pairs with

varying software similarities can be seen with a require-

ments similarity of 0.97 in FT. The trend line for USE

and pJSI seems to show more association compared to

others.

In Figure 6, we also visualize the interquartile range

(IQR), mean, and outliers in our variables. The box-

plot shows that the software similarity for most require-

ment pairs stays above 70%. The boxplot also gives an

overview of the requirements similarity ranges (embed-

ding space) for the different language models. For in-

stance, BERT tends to produce a cosine similarity value

between 90% and 100%, while for FastText (FT), the

embedding space ranges between 75% to 100%. This

indicates that for some metrics, and especially DW and

BERT, one may need to apply some scaling on the sim-

ilarity values, if they want to use them to clearly dis-

tinguish between similar and non-similar requirements.

On the contrary, for JSI and pJSI, requirements simi-

larity is particularly low and shows a wider range (be-

tween 0.3 and 0.6). This measure captures exclusively

the lexical similarity in terms of word overlaps, but this

is nevertheless sufficient to identify similar software, as

software similarity is still in the high ranges.

Correlation Analysis. We applied correlation anal-

ysis to quantify the relationship between requirements

and software similarity. We measure the correlation across

top-30 to top-50 most similar pairs of the requirements

and their source code similarity with a confidence level

of 95%, as shown in Figure 7. As apparent from Fig-

On the Relationship between Similar Requirements and Similar Software 15

Table 3: Themes and sub-themes relevant to the viewpoint on similarity of requirements, software and their

relationship.

Theme Sub-Theme

1. Similar requirements
identification and its
challenges

1.1 Requirements are perceived to be similar if they have similar logical behavior and
structure
1.2 Use of synonyms affects requirements quality
1.3 Requirements’ context and dependencies affects the identification of
similar requirements

2. Perception of
similar software

2.1 Similar software are perceived to have similar interfaces and processing on the inputs

3. Association between
similar requirements and
similar software

3.1 Similar requirements should ideally be realized by similar software
3.2 Requirements’ structure, quality, and abstraction levels affect its association with
similar software

0,450

0,455

0,460

0,465

0,470

0,475

0,480

0,485

0,490

0,495

30 35 40 45 50

Av
er

ag
e

rh
o

Top-n Pairs

Average rho across Top 30 to 50 Pairs

Fig. 8: Average correlation coefficient across top-30 to

top-50 pairs

ure 7, for topmost similar pairs between 30 and 50, for

all the language models, the Spearman’s rank corre-
lation coefficient (rho)9 is positive. As it can be seen

in Figure 7, the correlation coefficient varies across the

top-30 to top-50 pairs. We, therefore, consider the aver-

age ρ for each language model across the top-30 to top-

50 pairs. Table 2 show the results of average Spearman’s

rank correlation. The Average p-value indicates the

average significance of the obtained results. The Average

rho column is the average correlation coefficient for the

top-30 to top-50 pairs, which ranges from -1 to 1. As it

can be observed, there is a positive association between

the requirements similarity and software similarity for

all the language models, and the results are significant

for α = 0.05. Furthermore, for JSI, pTF, FT, pBERT,

and USE, the correlation is moderately high (i.e., be-

tween 0.5 and 0.7) [49]. The highest average correlation

(ρ = 0.60) is achieved with pBERT, the transformer-

based BERT model with pre-processing, followed by

9 Correlation coefficient (rho) is a value between -1 and 1,
quantifying the association between two variables.

word2vec-based FT (with average ρ = 0.59), and then

the traditional tf-idf with pre-processing (with average

ρ = 0.58), USE (0.522), and JSI (0.521). As anticipated

by the analysis of the descriptive statistics, DW shows

the lowest correlation (ρ = 0.35). Pre-processing ap-

pears to have different impact, depending on the lan-

guage model used, and we cannot identify a general

rule, as, e.g. TF, DW and BERT are enhanced by pre-

processing, while FT and USE are not. This is be-

cause some language models may utilize stop words and

case information for learning. For example, USE is de-

signed to utilize un-processed text and is intended to be

used as-is10. On the other hand, FT is a character-level

model, and therefore, stopwords and punctuation might

provide additional data for learning and inference.

We report the results for up to the top-50 most simi-

lar pairs of requirements and their software; as for a sig-

nificant correlation coefficient calculation, data points

of more than 30 are recommended. In contrast, selecting

a higher number of top-n pairs might include likely non-

similar requirement pairs. As shown in Figure 8, the col-

lective average of the correlation coefficient between re-

quirements similarity and its software similarity across

the selected language models follows a trend of decrease

as the number of selected top pairs increases. This sug-

gests that selecting a larger number would lead to the

inclusion of non-similar requirement pairs (this was ver-

ified through informal manual inspection of the results),

which would not be relevant in a context of require-

ments retrieval such as the one understudy, as the fo-

cus is on similar requirements (see RQs). The selection

of top-n pairs is also common in other requirements

retrieval studies [23].

10 Pre-processing in USE https://github.com/

tensorflow/hub/issues/209

https://github.com/tensorflow/hub/issues/209
https://github.com/tensorflow/hub/issues/209

16 Muhammad Abbas et al.

5.2 Qualitative Results (RQ2)

This section presents the findings from the focus group,

aiming to provide an answer to RQ2. Three main dis-

cussion topics, and associated themes, were identified

based on the transcript, namely:

– Viewpoint on Similarity: the topic collects them-

es around the perception of similar requirements,

similar software, and their association. The themes

are reported in Table 3;

– Reuse practices and challenges: the topic col-

lects themes about common practices adopted by

the practitioners and challenges in requirements-dr-

iven software retrieval for reuse (Table 4).

In the following, we discuss the results according to

the two main topics above. Quotes from the transcript

are presented in boxes to provide evidence of the link

between themes and data.

5.2.1 Viewpoint on Similarity

Theme 1. Similar requirements identification and

its challenges. During the focus group, participants

agreed that two requirements are considered to be sim-

ilar if they are using the same input for processing and

produce more or less similar outputs, and have the same

logical structure. However, other contextual informa-

tion, such as the system’s features and interfaces, are

also important to identify similar requirements. Thus,

similarity evaluation between requirements, also for en-

gineers, goes beyond the mere comparison of the surface

meaning of the text.

“Requirements are similar if they have the same

logical structure, and matching conditions, while

using the same inputs and provide the same out-

puts.” (...) “We have to look at the similarities,

but it is also on the conceptual level. For example,

which features that they want, do they want to by-

pass some features in this project? (...) these kinds

of things we also consider. ”

Content-based recommender systems ease the task

of identification of similar requirements using automat-

ically computed similarity. Therefore, there are also so-

me challenges in the automated identification of similar

requirements (sub-themes 1.2 and 1.3).

Specifically, the participants observed that the qual-

ity of requirements directly affects similarity evaluation.

Requirements that are non-atomic—i.e., requirements

that discuss more than one topic—may be identified

as similar to multiple requirements. In addition, too

many details in the requirements text might also affect

the identification of similar requirements. Identifying

similar requirements when the input requirements are

concise and describe only one topic is considered less

challenging.

“A requirement may contain much information.

While some might really describe a whole function.

(...) The challenge is less in the latter case, per-

haps.”

Approaches that automatically detect the non-atomic

requirements are of high interest in the context of requ-

irements-driven software reuse.

Synonyms are considered to affect the quality of re-

quirements and, therefore, also affect the identification

of similar requirements. Requirements might be coming

from different teams, written by engineers with differ-

ent backgrounds and choices of terms. For example, an

engineer may write “Overvoltage” or “Excessive volt-

age”, when referring to the same concept.

“We have seven or eight different sources that wri-

te requirements, all from different backgrounds and

at different levels of language quality. Therefore,

there is a huge variability of terms in the require-

ments, while they are referring to the same thing.”

The use of domain-specific synonyms is considered

to be common in the requirement documents of the

company, especially when requirements originate from

different teams. Participants also suggest a way to ad-

dress this, by including the synonyms in a mapping ta-

ble for resolution.

“Imagine you have one component that is used acr-

oss 50 projects. (...)” In all 50 projects, different
“terminologies have been used for that component.

For example, in one document, it is called excessive

voltage protection, and in another project, over-

voltage protection, so you will start to see the ac-

cumulation of terminologies that are used for this

component. However, we are not manually creating

this terminology list.”

In some cases, the requirement text alone might not

represent the whole context according to the partici-

pants. A requirement could be a derived one and may

have dependencies with many other requirements, for

example, when it helps to realize a larger system fea-

ture. Such a requirement might end up being similar to

a new requirement but would not be a good candidate

for reuse in the context of the new project, as reusing

it would imply reusing several other project-dependent

requirements that may not apply to the new project.

On the Relationship between Similar Requirements and Similar Software 17

“Some requirements which might be very similar

but in the context they are used, might be a small

part of a function with many other different re-

quirements affecting the implementation.”

Theme 2. Perception of similar software. All

participants agree that software modules are perceived

to be similar if they have identical inputs/interfaces, do

analogous processing on the inputs, and provide similar

outputs. As for analogous processing, it was clarified

that they intend that the Simulink models appear to

perform the same manipulation on the data, regardless

of the type of representation (e.g., state machines vs.

Simulink block diagrams).

“We look for the identical input signals, the same

description of processing and output, if so, then

probably the software are very similar.”

Theme 3. Association between similar require-

ments and similar software. Experts perceive the

association between similar requirements and similar

software as a ground truth. As pointed out by one of

the focus group participants, if there is a low or no asso-

ciation between similar requirements and similar soft-

ware, it might be a problem of missing trace links or

poor traceability in general.

“Same requirements, same software. Slightly dif-

ferent requirements, probably slightly different soft-

ware. (...) When you have small atomic require-

ments, which really define the input signal with no

other complexity, (...) then you can actually see the

similarity in software. (...) There is a correlation

between requirement similarity and its implemen-

tation. If not, we have got a bit of a problem with

that traceability.”

In addition, the participants observed that the more

structured and formal the similar requirements are, the

more likely it is to have a high association between

their similarity and the corresponding software similar-

ity. Requirements written in a structured natural lan-

guage are considered to better resemble the software

behavior (subtheme 3.2), thus tightening the relation-

ship between requirements and code, and in turn, facil-

itating reuse.

“How the requirements are expressed is also a bit of

interest here; if you can express it in a very clear

manner, with the prerequisites and the triggering

conditions that might ease reuse.”

Nevertheless, we found conflicting views on how re-

quirements should be written. On the one hand, struc-

turing the requirements into inputs, perquisites, and

conditions (Given, When, Then structure) is perceived

to be strengthening the association between similar re-

quirements and similar software. On the other hand,

some experts believe that requirements should be writ-

ten in the form of free text. Because, in their view,

anything in between NL requirements and software is

pseudo-code.

“The Given, When, Then structure is an indica-

tion of pseudo code (...) It is not a true represen-

tation of natural language requirements (...) The

software itself can give you all these Given, When,

Then. They are interchangeable.”

5.2.2 Reuse challenges and practices

Theme 4. Relevance and benefits of reuse. Soft-

ware reuse across different projects is a common prac-

tice for the PPC team and for many other similar teams

in the company. During the focus group, experts dis-

cussed various benefits of reuse. Reuse at the require-

ments level can avoid redundant development and test-

ing efforts. In addition, reuse can help in avoiding safety

re-certification and therefore, would save time and re-

sources. This is particularly important for safety-critical

products as the railway ones, as these need to go through

a structured process of verification and validation that

has to be entirely repeated when the software is sub-

stantially changed.

“If you have validated something safety-related,

reusing that without having to re-do all verifica-

tion, validation, and certification (...) would save

a huge amount of time.”

Identifying reuse opportunities based on requirem-

ents not only saves time but can also help the company

in the bidding process of acquiring new projects. The

risk of a new project can also be estimated based on

the similar requirements already implemented by the

companies in similar projects. In the studied setting, a

manual reuse analysis is normally conducted to aid the

bidding process.

“Today, reuse analysis is also done during the bid

phase already on the higher level of requirements.

We get complex hundreds of pages of technical doc-

uments, and any type of support there would be

useful.”

Participants also observed that reuse is not always

relevant. Specifically, this practice is not typical in those

cases where one single product is developed in evolu-

tion, without multiple deliveries or versions to address

diverse customer needs. For example, some participants

18 Muhammad Abbas et al.

Table 4: Themes and Sub-themes relevant to reuse practices and challenges.

Theme Sub Themes

4. Relevance and
benefits of reuse

4.1 Reduces development, re-certification, and testing time
4.2 Can aid the bidding process & project risk assessment
4.3 Reuse is more relevant in products with multiple deliveries or variants

5. Practices of
requirements-driven
software reuse

5.1 Reuse identification is based on domain knowledge and the experience of engineers
5.2 Test specifications may aid the identification of software for reuse

6. Challenges of
requirements-driven
software reuse

6.1 Variability management and standardization of interfaces are essential for reuse
6.2 Dependencies, context, and requirements relationships may hinder reuse
6.3 Traceability aids reuse but the granularity of links should be at the right level

in the focus group from the TCMS team do not reuse

software in their daily work, as the team is responsi-

ble for developing a platform for the execution of other

train applications. Somehow, the platform should be

reused by construction as a whole, and the problem of

reusing pieces of software is shifted at the application

level.

“Our team provides a compute platform for the ap-

plications. So, we normally have a typical scenario

of defining new functionality or providing support

for new hardware (...) I think reuse is more rele-

vant at the application level.”

Theme 5. Practices of requirements-driven

software reuse. Identifying reuse based on input re-

quirements can be a challenging task. When done man-

ually, the engineer is required to have knowledge of the

past projects that the company has done. This makes

the process of reuse analysis dependent on the experi-

ence of the engineer. In the studied setting, three differ-

ent approaches are combined for identifying reuse op-

portunities, as follows. The experience of the engineer

is used to recall existing similar requirements to the in-

put requirements. In addition, the engineer arranges an

informal meeting over coffee with other engineers and

discusses the input requirements. Finally, the engineer

might also have meetings with the domain expert in the

company. The domain team maintains a list of common

requirements that may help realize some of the new re-

quirements in new projects.

“We are usually at the coffee table with a bunch

of architects looking at the requirements. (...) So,

we have this coffee discussion which is one method.

The second one is Déjà vu; the engineer might have

worked with similar requirements before, so that is

the knowledge of the engineer herself. The third

way is the involvement of the domain architect for

the standard product (...)”

Experts also suggest looking into the natural lan-

guage test specifications linked to the requirements. A

tester mainly writes test specifications, and functionally

similar requirements might have similar test specifica-

tions.

“Does requirements similarity result in test cases

being similar? Because a requirement has to be ver-

ified, and the verification methodology is similar.

(...) The variable part does not matter so much

anymore because you are going to verify it in the

same way.”

However, for new input requirements, the test specifi-

cation might not be available to be used for identifying

similar requirements. Nevertheless, such an approach

could be very useful in a test-driven development set-

ting.

Theme 6. Challenges of requirements-driven

software reuse. Reuse of existing software may re-

duce time-to-market and safety certification efforts, but

there are some challenges and prerequisites to reuse.

Requirements along their software might be slightly

adapted to new project’s needs, and therefore, variant

management is essential for future reuse. In addition,

the requirements adaptations in some cases results in

changing just the value of some parameters. In such

cases, requirements parameterization has to be done.

“The variability in the projects should be somehow

taken into account(...) The standardization of the

interfaces is the key to reuse.”

An input requirement might be implemented before,

but reuse might not be possible. For example, some re-

quirements might be part of a bigger requirement and

might be implemented deep inside a bigger system func-

tion in the software. Reusing such a requirement in iso-

lation might not be feasible without taking the depen-

dencies into account.

“You might have a requirement that is very similar

to the new one, but it might be a small part of a

function with many different requirements affecting

the software.”

It is important to note that the requirements-driven

software reuse activities make use of traceability links.

On the Relationship between Similar Requirements and Similar Software 19

In many cases, companies might not maintain traceabil-

ity links, and if traceability is maintained, it is mainly

manual. This is also what happens at Alstom.

“We manually generate the traceability matrix. So,

we get requirements from the requirements man-

agement tool, we then import it into Simulink and

create a link with different model elements.”

Maintaining traceability between software and require-

ments at the right level of granularity is essential and

a prerequisite to reuse. Requirements can be linked at

varying granularity to the software, such as to classes,

functions, and conditions. In the studied setting, the

traceability links are maintained manually, and experts

recommend the link to be created with testable pieces

of software.

“You got to have that linking structure (...) We

had a look at linking requirements within the func-

tions, but if you start linking within functions, you

are breaking down the testable sections of it. You

cannot easily go into that function and test that lit-

tle area. So, we link requirements to the functions

because that is the lowest level of testing.”

6 Discussion

RQ1. To what extent is requirements similar-

ity correlated with the similarity of their linked

software in the context of requirements-based

software reuse?

The correlation analysis (presented in Table 2) sh-

ows that for all language models, we were able to find

a positive correlation between requirements similarity

and software similarity. In particular, the average ρ

across the top-30 to top-50 pairs shows a moderately

positive correlation between the two variables for JSI,

pTF, FT, USE, and pBERT (shown in bold text in Ta-

ble 2). Results also show that pre-processing improves

the correlation for some language models except JSI,

DW, FastText and USE.

Looking at the individual language models, we can

make the following observations. The emerging pre-trained

deep learning transformer-based language model pBERT

outperforms other state-of-the-art language models in

terms of average correlation coefficient, with an average

ρ of 0.60 with respect to software similarity. It is fol-

lowed closely by the word2vec-based pre-trained Fast-

Text language model with an average ρ of 0.59. This

suggests that these semantic-rich language models are

both appropriate for our context. On the other hand,

the traditional term frequency-based IR approach tf-idf

with pre-processing also shows a promising a correla-

tion with an average ρ of 0.58. Surprisingly, the simple

string-level JSI lexical similarity approach also shows

a moderately positive correlation (with an average ρ of

0.52) with software similarity. The good performance of

JSI and tf-idf can be explained by the limited vocabu-

lary and limited terms used in the requirements of the

two projects, as typical in the RE domain [41]. Also,

the projects come from the same team, and the issues

of synonyms previously observed may have less promi-

nence in the considered documents. Therefore, lexical

and IR metrics, which give relevance to single terms,

can be effective in this context and might have perfor-

mance that is only slightly lower compared to those

of more semantically rich models. However, in tasks

where requirements might be sharing fewer terms—e.g.,

in case of comparison between high-level customer re-

quirements and low-level specifications—, the benefit

of language models capturing semantics could become

more evident. The worst performance is obtained with

Doc2Vec (DW and pDW). This language model works

well with long documents and might not be a good can-

didate for RE tasks, as single requirements are typi-

cally short, but maybe beneficial in contexts where the

comparison is performed between entire requirements

documents. Overall, the observed performance of the

BERT language model further justifies its increasing

use in RE tasks [48,59], and suggests that, together

with FastText, it is an appropriate choice for require-

ments retrieval. At the same time, the effectiveness of

light-weight metrics, such as JSI and tf-idf, confirms the

choice of many works in recommender systems for RE,

which, as observed in Section 2, use these metrics in the

vast majority of the cases. Given these observations, we

can provide a summary answer to RQ1, as follows.

RQ1. There is a positive correlation between au-

tomatically computed requirements similarity and

software similarity measured with JPLag. On aver-

age, the BERT language model with preprocessing

(pBERT) is the one that best represents software

similarity in the considered context, followed by

FastText and tf-idf with pre-processing (pTF).

Other observations in relation to RQ1 can be de-

rived from the analysis of the descriptive statistics. The

trendlines in Figure 5 visually confirm that the results

from all the language models could have a positive as-

sociation with software similarity. Furthermore, from

the results shown in Figure 4, it can be seen that even

in worst cases, requirements-based code retrieval would

result in retrieving some code with a high software sim-

ilarity (that is more than 80%), which can be therefore

a good candidate for reuse.

20 Muhammad Abbas et al.

Observation. In the studied setting, requirements

similarity can be used as a proxy for retrieving

relevant software (sharing at least 80% software

similarity) for reuse in at least 60% of the cases.

Different behaviors can be observed across language

models. Figure 6 shows that similarity ranges largely

vary between language models (e.g., BERT and DW

have a very limited range with respect to the others).

This suggests that having a code-retrieval system that

is based on thresholds over the similarity values (e.g,

consider software with requirements similarity higher

than 75%) may not be the most appropriate solution.

Still looking at Figure 6, we observe that the variation

in the software similarity across the pairs is high in the

case of FT and BERT (i.e., larger SS box plots). This

suggests that these models tend to capture more nu-

anced semantic similarities in requirements, which may

point to more fine-grained variations of the software.

On the other hand, for these language models, the min-

imum software similarity can also be quite low, there-

fore indicating that the nuanced similarities in require-

ments can also lead to software that cannot be easily

reused. These more semantically-laden representations

may also be appropriate for tasks other than code re-

trieval, such as, e.g., requirements-to-requirements trac-

ing, where dependencies tend to go far beyond lexical

aspects. A final observation shall be made in relation

to USE. Though the correlation between requirements

similarity and software similarity is lower with respect

to other metrics (ρ = 0.52), the top-50 similar require-

ments pairs are linked to highly similar software. In-

deed, in the considered sample, no software pairs are

retrieved with a similarity that is lower than 60%, as

shown in Fig. 4. This suggests that, even in case of

lower requirements similarity, a retrieval system based

on USE may identify relevant software. Further research

considering manual annotations is needed to further as-

sess these results and understand how to better exploit

this characteristic of USE.

Observation. Different language models tend to

exhibit different behaviors when measuring req-

uirements similarity and also when used to retrieve

software. FT and pBERT appear to identify nu-

anced semantic requirements similarities, but could

in principle, also retrieve software that is hard to

reuse. USE is able to retrieve possibly relevant soft-

ware, even in the presence of requirements that

have more limited similarities.

RQ2. How do practitioners in the studied set-

ting perceive the association between similar re-

quirements and their software in the context of

requirements-based code reuse?

From the results of the focus group session, a se-

ries of main lessons have been highlighted in relation

to their vision around requirements and software simi-

larity, and their practices of code reuse. In the follow-

ing, we discuss the main take-away messages, and illus-

trate possible developments also in relation with related

works.

Similarity in Requirements-based Software Reuse. Prac-

titioners highlight that requirements are perceived to

be similar if they use similar inputs for processing and

describe the production of similar outputs. Like simi-

lar requirements, two similar software are perceived to

have similar inputs/interfaces, with similar processing

actions on the inputs, and produce similar outputs. An

association between similar requirements and similar

software is regarded as a ground truth by the experts.

Many factors, however, are observed to affect the

association between similar requirements and similar

software. These factors are related (1) to the way re-

quirements are expressed, and (2) to the relationship

between requirements and conceptual features. More

specifically, requirements that are expressed in an atomic

way can be more easily compared with other require-

ments, and also be more clearly associated with soft-

ware. Furthermore, despite the disagreement on the us-

age of controlled natural languages, requirements ex-

pressed with a clear structure in which it is easy to

identify input, output and processing activity are also

considered easier to compare. The usage of synonyms,

generally discouraged in requirements, can also make

requirements similarity evaluation harder. Finally, re-

quirements similarity also depends on the relationship

between the individual requirement and the system fea-

ture that is associated to it—i.e., requirements that are

dissimilar in terms of surface text may be considered

similar because they participate in the same feature.

When it comes to software reuse practices, the focus

group participants also observed that requirements sim-

ilarity is not the only aspect that comes into play when

deciding reuse opportunities. In particular, at the PPC

team, a recommender system is being developed for

identification of reuse [3], but the participants also use

other strategies. Specifically, they look into test specifi-

cations, and participate into discussions to collectively

recall previous experiences, and retrieve reuse-relevant

software. Therefore, identification of reuse is highly de-

pendent on the experiences of the engineers and ex-

perts’ knowledge of the domain.

Based on these observations, we can provide a sum-

mary answer to RQ2, as follows.

On the Relationship between Similar Requirements and Similar Software 21

RQ2. According to practitioners, requirements si-

similarity must correspond to software similarity.

Otherwise, this is regarded as a smell of poor trac-

ing. Factors affecting the evaluation of similarity

are the quality of the requirements (atomic and

clear structure, absence of synonyms), and the re-

lation between the individual requirement and the

conceptual feature to which it belongs. Require-

ments similarity is also not sufficient to enable

reuse; other processes- and knowledge-related as-

pects come into play when deciding software reuse.

Opportunities for Research in Similarity Computation.

The observations raised in the focus group trigger a se-

ries of opportunities for further research. In particular,

the association between similar requirements and sim-

ilar software can be improved by enhancing the way

similarity is computed among requirements.

More specifically, the similarity evaluation approa-

ches that we considered in our evaluation compute re-

quirements similarity on the whole text without looking

for inputs, conditions, processing steps, and outputs.

The conceptual-level details, such as features and struc-

tural information, are also ignored. According to our fo-

cus group participants, these are all elements that are

considered by practitioners when comparing require-

ments for similarity. Therefore, to improve similarity

computation, requirements should be tagged for inputs,

outputs, and conditional statements, and should be en-

hanced with meta-data identifying, e.g., their feature

or their category. For novel requirements, one could

expect to perform this task manually. For existing re-

quirements, the task should be addressed through au-

tomated means. This way, given a novel requirement,

one can retrieve similar ones utilizing these automat-

ically extracted tags and meta-data. In the following,

we consider available solutions to support this goal.

In the literature, efforts have been made to ex-

tract entities from requirements’ text for model ex-

traction. For example, actors, use-case names, post-

condition [87], and domain entities [8] can be extracted

based on heuristics. Such approaches can be adapted

to extract input, outputs, and conditions from require-

ments for meaningful similarity computation. Further-

more, these approaches could also be extended for au-

tomated structuring requirements’ text into the Given,

When, Then or the Easy Approach to Requirements

Syntax (EARS) [63] template, as done, e.g., by Arora

et al. [6]. Conceptual information such as the mapping

between the system features and requirements could be

considered for the identification of similar requirements

in the context of reuse. In this sense, approaches for

requirements classification [48,57] can be used to

automatically tag requirements based on their feature,

and thus producing meta-data that can be used for sim-

ilarity computation.

According to the focus group discussion, synonymy

is another relevant issue to address to facilitate simi-

larity computation. Previous work has been conducted

on identifying ambiguity related to synonyms, e.g., by

Dalpiaz et al. [24], who, in line with Shaw and Gaines

[85], refer to the usage of synonyms as correspondence.

The literature also includes the use of machine learn-

ing for synonym resolution in the context of trace link

recovery [91].

Another observation from the focus group is that

atomic and concise requirements are perceived to be

easier to evaluate and associate with similar software.

Non-atomic requirements might end up being similar to

many input requirements and thus might affect the as-

sociation between similar requirements and similar soft-

ware in the context of requirements-based code reuse.

Detecting non-atomic or compound requirements and

breaking them down into multiple requirements can im-

prove their quality, and in turn reinforce similarity com-

putation in a code retrieval settings. Experiences with

the IBM requirements quality assistant from the auto-

motive domain show that non-atomic requirements can

be detected with good accuracy [74].

As similar requirements must be associated to sim-

ilar software, it is also important to devise strategies

that incorporate software-related information within the

representation of the requirements. The extraction of

entities from software and other artifacts, as, e.g., test

cases, can be exploited to train language models that

not only account for requirements but also for their as-

sociated software as done for example with the novel

CodeBERT language model [35].

Observation. Research on automated recognition

of requirements entities (input, output, etc.), syn-

onym detection, non-atomic requirements identifi-

cation, and requirements classification can be used

to enrich requirements with meta-data, and im-

prove their quality. This will enhance requirements

similarity measures to be used in the field of soft-

ware reuse.

Opportunities for Research to Improve Reuse Practices.

Reuse is recognised by practitioners as a fundamental

practice to reduce development and verification time,

and avoid safety re-certification. Based on the input

from the focus group, here we consider possible oppor-

tunities for research that can improve reuse in practice.

Reuse analysis is often conducted in the company

to support the bidding for acquiring new projects and

22 Muhammad Abbas et al.

assessing the risk associated with a new call for ten-

ders. Call for tender documents are analyzed in rela-

tion to existing requirements to identify reuse opportu-

nities across projects and compute the risk of a new

project. Providing support to automate this process

can make the difference in facilitating the adaptation

of existing systems to the requirements of a call. Re-

cent work in this sense uses machine learning to iden-

tify requirements within tender documents [4], and can

be exploited together with similarity measures to enable

reuse. Similarly, developments in the field of change im-

pact analysis [16] can be particularly relevant to sup-

port the bidding process.

Some impediments to both manual and automated

requirements-driven software reuse are also observed by

the participants of our focus group. Specifically, adap-

tations to requirements and software are required to en-

able reuse across different projects. This results in many

functional variants of software components and require-

ments. Variability management, requirement standard-

ization, and parameterization is thus fundamental to

manage reuse [21]. NLP approaches for mining com-

monalities and variabilities in software requiremen-

ts [40,11] can be pursued to address this goal.

The requirements’ implementation might be a small

part of a larger system function, and reuse in isola-

tion might not be possible due to project-specific de-

pendencies. Automatic identification of requirements

dependencies [28,81] can help to understand which

requirements can be easily reused and which ones have

a too rich set of dependency links.

Traceability is also a prerequisite of requirements-

driven software reuse. Many companies, including Al-

stom, maintain trace links manually, and this process is

time consuming and error prone. Approaches for trace

link recovery [45,22,59] between requirements and

implementation models have been largely studied, and

could facilitate also reuse. It is however important to

notice that, if the traceability between requirements

and their software is not maintained at the right level

of granularity, the retrieved software might not be rel-

evant for reuse. We therefore foresee that approaches

for detecting inconsistencies in the granularity of trace

links could improve the requirements-driven software

reuse process.

Observation. The reuse process can be enhanced

with improved requirements similarity computa-

tion, but also with other automated practices. These

include requirements extraction from call for ten-

ders, variability mining, extraction of requirements

dependencies, and trace link recovery.

7 Threats to Validity

In this section, we present validity threats according to

Runeson et al. [79].

Construct Validity. We based the problem of software

retrieval for reuse at the requirements level and pro-

vided empirical evidence on the association between

requirements similarity and software similarity. In our

procedure, we used pre-trained models that are heavily

dependent on the quality of the training dataset. The

quality of the results might differ if different pre-trained

language models are considered. To mitigate potential

threats to construct validity, we selected a diverse set of

approaches (see Section 3) to represent the semantics

of the requirements. Other construct validity threats

might be relevant to the design of our focus group in-

strument. To mitigate potential threats to construct

validity, we designed the focus instrument using termi-

nologies known to the participant. The instrument was

refined over several iterations and through a pilot fo-

cus group session. Furthermore, in our study, we mimic

the original process at the company and generate code

from Simulink models instead of using manually written

code. Thus, when referring to software or code, we con-

sider automatically generated one. Analyzing the rela-

tionship between requirements similarity and software

similarity computed on manually written code might

produce different results. Indeed, automatically gener-

ated code tends to appear as code always written by the

same programmer [38], which can lead to a higher sim-

ilarity between automatically generated software pairs

than manually written ones. On the other hand, railway

companies follow specific internal coding guidelines to

ensure high-quality code. Therefore, the similarity of

manually written code could also be higher with re-

spect to other, less regulated contexts. Future research

will clarify to what extent our results can be extended

to manually written code.

Internal Validity. Internal validity threats affect the va-

lidity and credibility of our results. We followed stan-

dard procedure and open source implementations of the

language models to mitigate potential internal validity

threats. In addition, we also involved researchers from

diverse backgrounds to validate the study design and

execution. We also involved a technical project man-

ager at the company in validating our quantitative data

collection procedure. In the focus group, the presence

of part of the authors could bias the audience. Though

this could not be entirely avoided, the focus group was

conducted with a pre-defined script, which was tested

and re-harsed among the authors. Finally, the results

On the Relationship between Similar Requirements and Similar Software 23

from the thematic analysis were verified by a manager

at the company to ensure consistency.

External Validity. Our results are based on data pro-

vided by one company using a data set of two projects

developed by one team. The qualitative results are based

on the perceptions of experts from two teams of the

same company, and are limited to the viewpoint of

five experts. Five participants are within the recom-

mended number of participants for focus groups in soft-

ware engineering, which is 3 to 12 participants [55]. Fur-

thermore, the two teams considered for this study use

different requirements engineering practices and there-

fore provided different perspectives concerning software

reuse. As typical for case studies, we do not claim the

generalizability of our results beyond this context. In

addition, our results are only limited to one level of

abstraction since we do not consider multiple levels of

requirement refinement. In lights of the guidelines for

case-based generalization [93], these results might be

applicable to similar contexts, as e.g., railway, aerospace

or other safety-critical domains, where similar RE prac-

tices are followed. The company follows a MATLAB/-

Simulink-based model-driven development process, sim-

ilar to other companies and domains [39,62], where the

system is modeled, and code is generated automatically

to reduce development efforts. We argue that similar

results can be obtained in domains with highly struc-

tured and waterfall-like processes, as the railway one.

Further studies are needed, considering other abstrac-

tion levels of requirements and in different companies

and domains, to generalize the results.

Reliability. Finally, we address the threats to the relia-

bility of our results by providing enough details on the

experimental setup and implementation. We designed

the study following well-established guidelines, involv-

ing authors from diverse backgrounds. In addition, we

also provide the R script and the similarity values be-

tween the pairs for replication purposes11.

8 Conclusion and Future Work

Content-based recommender systems for code retrieval

typically use requirements as queries to identify previ-

ously developed requirements, and in turn, reuse their

implementation. These systems take the operational as-

sumption that similar requirements can be used as prox-

ies to retrieve similar code that can be reused with

limited adaptation. This paper presents an empirical

11 Replication package, https://doi.org/10.5281/zenodo.
4916071

investigation on the relationship between requirements

similarity and code similarity in the context of a large

railway company. The goal of the work is to explore

to which extent similar requirements can be consid-

ered as a proxy to retrieve similar code. We consider

two related projects in the company. We use differ-

ent seminal NLP-based language models to represent

the requirements and support similarity computation.

Our choice of language models covers representative

seminal models from lexical approaches to IR (tf-idf),

word2vec-based and DL-based models. Given similar

requirements, we identify the associated code, and we

compute code similarity with JPLag. In addition, we

conducted a focus group session to gather the percep-

tions of experts on the association between require-

ments similarity and software similarity. Our analysis

shows that the correlation between requirements and

source code similarity is positive, while the best case

being moderately positive correlation. Results from the

thematic analysis on the transcript shows that experts

perceive an association between requirements similar-

ity and software similarity. So, a relationship exists be-

tween the two, but there is also a need for further re-

search on language models and similarity measurement

approaches so that it can better reflect software simi-

larity. In our specific case, the language model that re-

flects software similarity better is the transformer-based

BERT language model with preprocessing.

Future work will consider a broader set of possi-

ble application scenarios of recommender systems for

software reuse. Avenues that we plan to explore are as

follows.

– using requirements similarity to predict software sim-

ilarity for better ranking in retrieval tasks.

– considering terms from software and test specifica-

tions, such as function and variable names, and code

comments for training language models. We believe

that this can help in optimizing the correlation be-

tween requirements similarity and software similar-

ity.

– considering demarcating the inputs, outputs and pr-

ocessing information within the requirement’s text

– considering the original tender requirements, and

identify the relationship with existing requirements

and associated software, to support early evaluation

during bid proposal

– considering feature or refactoring requests as input

queries, to support change impact analysis [9,16]

– consider other companies and domains other than

railways to increase external validity of the results

– identify when a specific language model is more ap-

propriate to compute similarity, given the types of

relationship between the format of the queries ac-

https://doi.org/10.5281/zenodo.4916071
https://doi.org/10.5281/zenodo.4916071

24 Muhammad Abbas et al.

cepted by the recommender system, the character-

istics of the requirements (e.g., high- vs low-level,

functional vs quality), and the type of activity that

is expected to be performed with the retrieved soft-

ware, which can be reused, but also correct, remove,

end even validate. Indeed, similarity measures and

code retrieval can also be exploited to identify in-

correctly traced software or missing trace links [42,

45], as well as potentially tacit requirements that are

implemented in the software but are not specified.

References

1. Abbas, M., Ferrari, A., Shatnawi, A., Enoiu, E.P., Saa-
datmand, M.: Is requirements similarity a good proxy
for software similarity? an empirical investigation in in-
dustry. In: The 27th International Working Confer-
ence on Requirements Engineering: Foundation for Soft-
ware Quality, pp. 3–18. Springer International Publishing
(2021)

2. Abbas, M., Jongeling, R., Lindskog, C., Enoiu, E.P., Saa-
datmand, M., Sundmark, D.: Product line adoption in
industry: An experience report from the railway domain.
In: Proceedings of the 24th ACM Conference on Systems
and Software Product Line: Volume A - Volume A, SPLC
’20. ACM, New York, NY, USA (2020)

3. Abbas, M., Saadatmand, M., Enoiu, E., Sundamark, D.,
Lindskog, C.: Automated reuse recommendation of prod-
uct line assets based on natural language requirements.
In: S. Ben Sassi, S. Ducasse, H. Mili (eds.) Reuse in
Emerging Software Engineering Practices, pp. 173–189.
Springer International Publishing, Cham (2020)

4. Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C.,
Traynor, M.: Automated demarcation of requirements
in textual specifications: a machine learning-based ap-
proach. Empirical Software Engineering 25(6), 5454–
5497 (2020)

5. Ali, N., Guéhéneuc, Y.G., Antoniol, G.: Trustrace: Min-
ing software repositories to improve the accuracy of re-
quirement traceability links. IEEE Transactions on Soft-
ware Engineering 39(5), 725–741 (2012)

6. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Au-
tomated checking of conformance to requirements tem-
plates using natural language processing. IEEE transac-
tions on Software Engineering 41(10), 944–968 (2015)

7. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Auto-
mated extraction and clustering of requirements glossary
terms. Transactions on Software Engineering 43(10),
918–945 (2016)

8. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Ex-
tracting domain models from natural-language require-
ments: Approach and industrial evaluation. In: Proceed-
ings of the ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems,
p. 250–260. ACM, New York, NY, USA (2016). DOI
10.1145/2976767.2976769. URL https://doi-org.ep.

bib.mdh.se/10.1145/2976767.2976769
9. Arora, C., Sabetzadeh, M., Goknil, A., Briand, L.C., Zim-

mer, F.: Change impact analysis for natural language re-
quirements: An nlp approach. In: International Require-
ments Engineering Conference (RE), pp. 6–15. IEEE
(2015)

10. Aung, T.W.W., Huo, H., Sui, Y.: A literature review of
automatic traceability links recovery for software change

impact analysis. In: Proceedings of the 28th Interna-
tional Conference on Program Comprehension, pp. 14–24
(2020)

11. Bakar, N.H., Kasirun, Z.M., Salleh, N.: Feature extrac-
tion approaches from natural language requirements for
reuse in software product lines: A systematic literature
review. Journal of Systems and Software 106, 132–149
(2015)

12. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neu-
ral probabilistic language model. The journal of machine
learning research 3, 1137–1155 (2003)

13. Bohner: Impact analysis in the software change process:
a year 2000 perspective. In: 1996 Proceedings of Inter-
national Conference on Software Maintenance, pp. 42–51
(1996). DOI 10.1109/ICSM.1996.564987

14. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: En-
riching word vectors with subword information. Trans-
actions of the Association for Computational Linguistics
5, 135–146 (2017)

15. Borg, M., Runeson, P., Ardö, A.: Recovering from a
decade: a systematic mapping of information retrieval
approaches to software traceability. Empirical Software
Engineering 19(6), 1565–1616 (2014). DOI 10.1007/
s10664-013-9255-y

16. Borg, M., Wnuk, K., Regnell, B., Runeson, P.: Support-
ing change impact analysis using a recommendation sys-
tem: An industrial case study in a safety-critical context.
IEEE Transactions on Software Engineering 43(7), 675–
700 (2016)

17. Braun, V., Clarke, V.: Using thematic analysis in psy-
chology. Qualitative Research in Psychology 3(2), 77–101
(2006). DOI 10.1191/1478088706qp063oa

18. Breen, R.L.: A practical guide to focus-group research.
Journal of Geography in Higher Education 30(3), 463–
475 (2006)

19. Castro-Herrera, C., Cleland-Huang, J., Mobasher, B.:
Enhancing stakeholder profiles to improve recommenda-
tions in online requirements elicitation. In: International
Requirements Engineering Conference, pp. 37–46. IEEE
(2009)

20. Cer, D., Yang, Y., yi Kong, S., Hua, N., Limtiaco, N.,
John, R.S., Constant, N., Guajardo-Cespedes, M., Yuan,
S., Tar, C., Sung, Y.H., Strope, B., Kurzweil, R.: Univer-
sal sentence encoder (2018)

21. Chen, L., Ali Babar, M., Ali, N.: Variability management
in software product lines: a systematic review (2009)

22. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J.,
Mäder, P., Zisman, A.: Software traceability: trends and
future directions. In: Future of Software Engineering Pro-
ceedings, pp. 55–69 (2014)

23. Natt och Dag, J., Regnell, B., Gervasi, V., Brinkkem-
per, S.: A linguistic-engineering approach to large-scale
requirements management. IEEE software 22(1), 32–39
(2005)

24. Dalpiaz, F., Van Der Schalk, I., Brinkkemper, S., Ay-
demir, F.B., Lucassen, G.: Detecting terminological am-
biguity in user stories: tool and experimentation. Infor-
mation and Software Technology 110, 3–16 (2019)

25. Davey, J., Burd, E.: Evaluating the suitability of data
clustering for software remodularisation. Proceedings
Seventh Working Conference on Reverse Engineering pp.
268–276 (2000)

26. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer,
T.K., Harshman, R.: Indexing by latent semantic anal-
ysis. Journal of the American society for information
science 41(6), 391–407 (1990)

https://doi-org.ep.bib.mdh.se/10.1145/2976767.2976769
https://doi-org.ep.bib.mdh.se/10.1145/2976767.2976769

On the Relationship between Similar Requirements and Similar Software 25

27. Deshpande, G., Arora, C., Ruhe, G.: Data-driven elicita-
tion and optimization of dependencies between require-
ments. In: 2019 IEEE 27th International Requirements
Engineering Conference (RE), pp. 416–421. IEEE (2019)

28. Deshpande, G., Motger, Q., Palomares, C., Kamra, I.,
Biesialska, K., Franch, X., Ruhe, G., Ho, J.: Require-
ments dependency extraction by integrating active learn-
ing with ontology-based retrieval. In: 2020 IEEE 28th In-
ternational Requirements Engineering Conference (RE),
pp. 78–89. IEEE (2020)

29. Devine, P., Koh, Y.S., Blincoe, K.: Evaluating unsuper-
vised text embeddings on software user feedback. In:
2021 IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 87–95 (2021). DOI
10.1109/REW53955.2021.00020

30. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805
(2018)

31. Dumitru, H., Gibiec, M., Hariri, N., Cleland-Huang, J.,
Mobasher, B., Castro-Herrera, C., Mirakhorli, M.: On-
demand feature recommendations derived from mining
public product descriptions. In: International Conference
on Software Engineering, pp. 181–190 (2011)

32. Eyal-Salman, H., Seriai, A.D., Dony, C.: Feature-to-code
traceability in a collection of software variants: Combin-
ing formal concept analysis and information retrieval. In:
2013 IEEE 14th International Conference on Information
Reuse & Integration (IRI), pp. 209–216 (2013)

33. Falessi, D., Cantone, G., Canfora, G.: Empirical princi-
ples and an industrial case study in retrieving equiva-
lent requirements via natural language processing tech-
niques. Transactions on Software Engineering 39(1), 18–
44 (2011)

34. Felfernig, A., Falkner, A., Atas, M., Franch, X., Palo-
mares, C.: OpenReq: Recommender systems in require-
ments engineering. In: RS-BDA, pp. 1–4 (2017)

35. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong,
M., Shou, L., Qin, B., Liu, T., Jiang, D., Zhou, M.: Code-
BERT: A pre-trained model for programming and natural
languages. In: Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pp. 1536–1547. As-
sociation for Computational Linguistics, Online (2020).
DOI 10.18653/v1/2020.findings-emnlp.139. URL https:

//aclanthology.org/2020.findings-emnlp.139

36. Fernández, D.M., Wagner, S., Kalinowski, M., Felderer,
M., Mafra, P., Vetrò, A., Conte, T., Christiansson, M.T.,
Greer, D., Lassenius, C., et al.: Naming the pain in re-
quirements engineering. Empirical Software Engineering
22(5), 2298–2338 (2017)

37. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi,
S.: Natural language requirements processing: a 4d vision.
IEEE Annals of the History of Computing 34(06), 28–35
(2017)

38. Ferrari, A., Fantechi, A., Gnesi, S., Magnani, G.: Model-
based development and formal methods in the railway
industry. IEEE software 30(3), 28–34 (2013)

39. Ferrari, A., Fantechi, A., Magnani, G., Grasso, D., Tem-
pestini, M.: The metrô rio case study. Science of Com-
puter Programming 78(7), 828–842 (2013)

40. Ferrari, A., Spagnolo, G.O., Dell’Orletta, F.: Mining com-
monalities and variabilities from natural language docu-
ments. In: Proceedings of the 17th International Software
Product Line Conference, pp. 116–120 (2013)

41. Ferrari, A., Spagnolo, G.O., Gnesi, S.: Pure: A dataset of
public requirements documents. In: 2017 IEEE 25th In-

ternational Requirements Engineering Conference (RE),
pp. 502–505 (2017). DOI 10.1109/RE.2017.29

42. Gervasi, V., Zowghi, D.: Supporting traceability through
affinity mining. In: International Requirements Engineer-
ing Conference (RE), pp. 143–152. IEEE (2014)

43. Gethers, M., Dit, B., Kagdi, H., Poshyvanyk, D.: Inte-
grated impact analysis for managing software changes.
In: 2012 34th International Conference on Software En-
gineering (ICSE), pp. 430–440. IEEE (2012)

44. Guo, H., Singh, M.P.: Caspar: Extracting and synthesiz-
ing user stories of problems from app reviews. In: 2020
IEEE/ACM 42nd International Conference on Software
Engineering (ICSE), pp. 628–640 (2020)

45. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically en-
hanced software traceability using deep learning tech-
niques. In: International Conference on Software Engi-
neering (ICSE), pp. 3–14. IEEE (2017)

46. Hariri, N., Castro-Herrera, C., Cleland-Huang, J.,
Mobasher, B.: Recommendation systems in requirements
discovery. In: Recommendation Systems in Software En-
gineering, pp. 455–476. Springer (2014)

47. Hatcher, E., Gospodnetić, O., McCandless, M.: Lucene
in action. Manning Greenwich (2005)

48. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: Norbert:
Transfer learning for requirements classification. In: 2020
IEEE 28th International Requirements Engineering Con-
ference (RE), pp. 169–179. IEEE (2020)

49. Hinkle, D.E., Wiersma, W., Jurs, S.G.: Applied statistics
for the behavioral sciences, vol. 663. Houghton Mifflin
College Division (2003)

50. Irshad, M., Petersen, K., Poulding, S.: A systematic liter-
ature review of software requirements reuse approaches.
IST Journal 93, 223–245 (2018)

51. Ito, K., Ishio, T., Inoue, K.: Web-service for finding
cloned files using b-bit minwise hashing. In: 2017
IEEE 11th International Workshop on Software Clones
(IWSC), pp. 1–2. IEEE (2017)

52. Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li,
Y., Zhao, L.: Latent dirichlet allocation (lda) and topic
modeling: models, applications, a survey. Multimedia
Tools and Applications 78(11), 15169–15211 (2019)

53. Jolliffe, I.T., Cadima, J.: Principal component analysis:
a review and recent developments. Philosophical Trans-
actions of the Royal Society A: Mathematical, Physical
and Engineering Sciences 374(2065), 20150202 (2016)

54. Kassab, M., Neill, C., Laplante, P.: State of practice in
requirements engineering: contemporary data. Innova-
tions in Systems and Software Engineering 10(4), 235–
241 (2014)

55. Kontio, J., Lehtola, L., Bragge, J.: Using the focus group
method in software engineering: obtaining practitioner
and user experiences. In: Proceedings. 2004 International
Symposium on Empirical Software Engineering, 2004. IS-
ESE’04., pp. 271–280. IEEE (2004)

56. Krueger, C.: Easing the transition to software mass
customization. In: International Workshop on Soft-
ware Product-Family Engineering, pp. 282–293. Springer
(2001)

57. Kurtanović, Z., Maalej, W.: Automatically classifying
functional and non-functional requirements using super-
vised machine learning. In: 2017 IEEE 25th Interna-
tional Requirements Engineering Conference (RE), pp.
490–495. Ieee (2017)

58. Le, Q., Mikolov, T.: Distributed representations of sen-
tences and documents. In: International conference on
machine learning, pp. 1188–1196 (2014)

https://aclanthology.org/2020.findings-emnlp.139
https://aclanthology.org/2020.findings-emnlp.139

26 Muhammad Abbas et al.

59. Lin, J., Liu, Y., Zeng, Q., Jiang, M., Cleland-Huang, J.:
Traceability transformed: Generating more accurate links
with pre-trained bert models. In: ICSE 2021, to appear
(2021). URL https://arxiv.org/abs/2102.04411v2

60. Lops, P., De Gemmis, M., Semeraro, G.: Content-based
recommender systems: State of the art and trends. In:
Recommender systems handbook, pp. 73–105. Springer
(2011)

61. Manning, C.D., Schütze, H., Raghavan, P.: Introduc-
tion to information retrieval. Cambridge university press
(2008)

62. Matinnejad, R., Nejati, S., Briand, L.C., Bruckmann,
T.: Automated test suite generation for time-continuous
simulink models. In: proceedings of the 38th Interna-
tional Conference on Software Engineering, pp. 595–606
(2016)

63. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy
approach to requirements syntax (ears). In: 2009 17th
IEEE International Requirements Engineering Confer-
ence, pp. 317–322. IEEE (2009)

64. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient
estimation of word representations in vector space (2013)

65. Narasimhan, K., Reichenbach, C., Lawall, J.: Cleaning up
copy–paste clones with interactive merging. Automated
Software Engineering 25(3), 627–673 (2018)

66. Ninaus, G., Reinfrank, F., Stettinger, M., Felfernig, A.:
Content-based recommendation techniques for require-
ments engineering. In: 2014 IEEE 1st International
Workshop on Artificial Intelligence for Requirements En-
gineering (AIRE), pp. 27–34. IEEE (2014)

67. Nyamawe, A.S., Liu, H., Niu, N., Umer, Q., Niu, Z.: Au-
tomated recommendation of software refactorings based
on feature requests. In: International Requirements En-
gineering Conference (RE), pp. 187–198. IEEE (2019)

68. Nyamawe, A.S., Liu, H., Niu, N., Umer, Q., Niu, Z.: Fea-
ture requests-based recommendation of software refactor-
ings. Empirical Software Engineering 25(5), 4315–4347
(2020)

69. Palomares, C., Franch, X., Fucci, D.: Personal recom-
mendations in requirements engineering: the openreq ap-
proach. In: International working conference on require-
ments engineering: foundation for software quality, pp.
297–304. Springer (2018)

70. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE
Transactions on knowledge and data engineering 22(10),
1345–1359 (2009)

71. Panichella, A., Dit, B., Oliveto, R., Di Penta, M., Poshy-
nanyk, D., De Lucia, A.: How to effectively use topic mod-
els for software engineering tasks? an approach based on
genetic algorithms. In: 2013 35th International Confer-
ence on Software Engineering (ICSE), pp. 522–531. IEEE
(2013)

72. Pawlik, M., Augsten, N.: Rted: A robust algorithm for the
tree edit distance. Proceedings of the VLDB Endowment
5(4) (2011)

73. Ponte, J.M., Croft, W.B.: A language modeling approach
to information retrieval. In: Proceedings of the 21st an-
nual international ACM SIGIR conference on Research
and development in information retrieval, pp. 275–281
(1998)

74. Post, A., Fuhr, T.: Case study: How well can ibm’s” re-
quirements quality assistant” review automotive require-
ments? In: REFSQ Workshops (2021)

75. Prechelt, L., Malpohl, G., Philippsen, M., et al.: Finding
plagiarisms among a set of programs with jplag. J. UCS
8(11), 1016 (2002)

76. Ragkhitwetsagul, C., Krinke, J., Clark, D.: A compari-
son of code similarity analysers. Empirical Software En-
gineering 23(4), 2464–2519 (2018)

77. Řeh̊uřek, R., Sojka, P.: Software Framework for Topic
Modelling with Large Corpora. In: Proceedings of the
LREC 2010 Workshop on New Challenges for NLP
Frameworks, pp. 45–50. ELRA (2010)

78. Robillard, M.P., Maalej, W., Walker, R.J., Zimmermann,
T. (eds.): Recommendation Systems in Software Engi-
neering. Springer (2014)

79. Runeson, P., Höst, M.: Guidelines for conducting and re-
porting case study research in software engineering. Em-
pirical Software Engineering 14(2), 131–164 (2009)

80. Rus, V., Lintean, M., Banjade, R., Niraula, N.B., Ste-
fanescu, D.: Semilar: The semantic similarity toolkit. In:
Proceedings of the 51st annual meeting of the associ-
ation for computational linguistics: System demonstra-
tions, pp. 163–168 (2013)

81. Samer, R., Stettinger, M., Atas, M., Felfernig, A., Ruhe,
G., Deshpande, G.: New approaches to the identification
of dependencies between requirements. In: 2019 IEEE
31st International Conference on Tools with Artificial In-
telligence (ICTAI), pp. 1265–1270. IEEE (2019)

82. Shatnawi, A., Seriai, A., Sahraoui, H., Ziadi, T., Seriai,
A.: Reside: Reusable service identification from software
families. JSS 170, 110748 (2020)

83. Shatnawi, A., Seriai, A.D., Sahraoui, H.: Recovering soft-
ware product line architecture of a family of object-
oriented product variants. Journal of Systems and Soft-
ware 131, 325–346 (2017)

84. Shatnawi, A., Ziadi, T., Mohamadi, M.Y.: Understand-
ing source code variability in cloned android families: an
empirical study on 75 families. In: 2019 26th Asia-Pacific
Software Engineering Conference (APSEC), pp. 292–299.
IEEE (2019)

85. Shaw, M.L., Gaines, B.R.: Comparing conceptual struc-
tures: consensus, conflict, correspondence and contrast.
Knowledge acquisition 1(4), 341–363 (1989)

86. Tang, W., Chen, D., Luo, P.: Bcfinder: A lightweight
and platform-independent tool to find third-party com-
ponents in binaries. In: 2018 25th Asia-Pacific Software
Engineering Conference (APSEC), pp. 288–297. IEEE
(2018)

87. Tiwari, S., Ameta, D., Banerjee, A.: An approach to iden-
tify use case scenarios from textual requirements speci-
fication. ISEC’19. ACM, New York, NY, USA (2019).
DOI 10.1145/3299771.3299774

88. Walker, A., Cerny, T., Song, E.: Open-source tools and
benchmarks for code-clone detection: past, present, and
future trends. ACM SIGAPP Applied Computing Re-
view 19(4), 28–39 (2020)

89. Wang, B., Peng, R., Li, Y., Lai, H., Wang, Z.: Require-
ments traceability technologies and technology transfer
decision support: A systematic review. Journal of Sys-
tems and Software 146, 59–79 (2018)

90. Wang, M., Wang, P., Xu, Y.: Ccsharp: An efficient three-
phase code clone detector using modified pdgs. In:
2017 24th Asia-Pacific Software Engineering Conference
(APSEC), pp. 100–109. IEEE (2017)

91. Wang, W., Niu, N., Liu, H., Niu, Z.: Enhancing auto-
mated requirements traceability by resolving polysemy.
In: 2018 IEEE 26th International Requirements Engi-
neering Conference (RE), pp. 40–51. IEEE (2018)

92. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.:
Deep learning code fragments for code clone detection.
In: International Conference on Automated Software En-
gineering (ASE), pp. 87–98. IEEE (2016)

https://arxiv.org/abs/2102.04411v2

On the Relationship between Similar Requirements and Similar Software 27

93. Wieringa, R., Daneva, M.: Six strategies for generaliz-
ing software engineering theories. Science of computer
programming 101, 136–152 (2015)

94. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J.,
Ajagbe, M.A., Chioasca, E.V., Batista-Navarro, R.T.:
Natural language processing for requirements engineer-
ing: A systematic mapping study. ACM Comput. Surv.

54(3) (2021). DOI 10.1145/3444689. URL https://doi.

org/10.1145/3444689

95. Ziadi, T., Frias, L., da Silva, M.A.A., Ziane, M.: Feature
identification from the source code of product variants.
In: 2012 16th European Conference on Software Mainte-
nance and Reengineering, pp. 417–422. IEEE (2012)

https://doi.org/10.1145/3444689
https://doi.org/10.1145/3444689

	Introduction
	Related Work
	Background: Measuring Requirements Similarity
	Study Design
	Results
	Discussion
	Threats to Validity
	Conclusion and Future Work

