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Abstract—J2EE applications tend to be multi-tier and multi-
language applications. They rely on the J2EE platform and
containers that offer infrastructure and architectural services
to ensure distributed, secure, safe, and scalable executions.
These mechanisms hide many program dependencies, which
helps development but hinders maintenance, evolution, and re-
engineering of J2EE applications. In this paper, we study (i) the
J2EE specifications to extract a declarative specification of the
dependencies that are inherent in the services offered and that
are not visible in the user code that uses them. Then, we introduce
(ii) a codification of the dependencies into rules, and (iii) a tool
that supports the specification of those dependencies and their
detection in J2EE applications. We validate our approach and
tool on a sample of 10 J2EE applications. We also compare our
tool against JRipples, a state-of-the-art tool for change-impact
analysis tasks. Results show that our tool adds, on average, 15%
more call dependencies, which would have been missed otherwise.
On change impact analysis tasks, our tool outperforms JRipples
in all 10 applications, especially for the early iterations of change
propagation exploration.

I. INTRODUCTION

The first generation of Java Enterprise applications (J2EE)
are showing signs of age, including difficulties in their mainte-
nance, evolution, and re-engineering [1]. Hence, many orga-
nizations are modernizing first-generation J2EE applications
to modern service-oriented architectures, such as REST and
micro-services [2], [3], [4].

J2EE applications are multi-tier, multi-language applications
that rely on the J2EE platform to benefit from infrastructural
and architectural services, such as distribution, persistence,
scalability, and security. The platform relieves developers
from the need to design, implement, test, and maintain such
services. They also hide many of the control dependencies
between the components of the platform and applications by
using inversion of control and various late-binding techniques,
which do not explicitly appear in the application source code.
They also often use techniques like reflection or code genera-
tion that prevent static code-analysis tools and developers from
identifying and understanding these hidden dependencies. For
example, in Enterprise JavaBeans 2 (EJB2), there is an implicit
call between the create(...) method on the home interface
of an EJB, client-side, and the corresponding ejbCreate(...)
method of the bean class, server-side. This call introduces

hidden dependencies that are not visible for developers and
tools which solely rely on the source code of the application.

A number of software development and maintenance tasks
such as program comprehension, change impact analysis,
refactoring, and debugging, rely on the dependencies between
program elements (variables, functions, classes, methods, etc.)
[5], [6], [7], [8]. Therefore, the already complex maintenance
and evolution tasks of legacy applications may be hindered
when hidden dependencies are not discovered. To continue
with our example, a developer willing to modify the im-
plementation of the ejbCreate(...) server-side method of an
EJB, needs to analyze the impacts of this modification in
all create(...) client-side methods. Moreover, previous ap-
proaches exist (e.g., [9], [10]) and many organizations have
developed technology-specific tools to support migration pro-
cess of legacy application. Even if this remain an essentially
knowledge-intensive manual migration, these approaches also
rely on similar dependencies. However, to the best of our
knowledge, these approaches pertain to COBOL or technolo-
gies that do not involve the layers of abstractions found in
J2EE. Hence, they offer processes applicable to the migration
of legacy applications but they do not help dealing with hidden
dependencies such as the one found in J2EE applications.

Hence, we propose a new approach to static code-analysis in
which we can specify hidden dependencies and with which we
can build model of legacy J2EE applications, including both
explicit and hidden dependencies. Such dependencies connect
the call graph obtained by statically analyzing the Web tier to
that obtained for the EJB tier, otherwise unconnected.

In this paper, we describe our approach to specify hidden
dependencies and apply it on EJB. We study the specification
of EJB2 to characterize its hidden dependencies and encode
them in rules. Then our approach uses call graphs, produced
by a static-code analysis, which we complement by adding,
programmatically, the control dependencies inherent to EJB2
to create augmented call graphs. We rely on the OMG Knowl-
edge Discovery Metamodel (KDM) to represent the program
elements and dependencies of these call graphs [11]. KDM
allows the representation of different artifacts of applications,
including JSP pages, Java files, configuration files indepen-
dently of their languages. We use MoDISCO [12], an Eclipse-



based implementation of KDM.
We evaluate our approach by applying our tool on 10 open-

source J2EE applications. We also compare the performance
of our augmented call graph on two maintenance tasks:
(1) change impact analysis, using JRipples [7] and (2) call
hierarchy analysis, using Eclipse’s native functionality. Both
tasks perform better with our augmented call graphs.

In the following, Section II discusses the analysis of legacy
J2EE applications and presents our approach. Section III
describes specifically container service contracts. Section V
introduces our tool implementation. Section VI describes our
evaluation. Section VIII summarizes related work. Section IX
concludes with future work.

II. ISSUES IN ANALYZING J2EE APPLICATIONS

Call graphs are built using two techniques or combinations
thereof: (1) static code-analysis, by parsing the source code of
a program and–or (2) dynamic tracing, by executing a program
and recording call sequences. The choice of the technique
depends on many factors including (1) the availability of the
source code, (2) the ease with which the program can be ex-
ecuted, (3) whether the programming language(s) is statically
typed, and (4) the required level of accuracy (precision and
recall of the identified dependencies) of the graph [13].

While dynamic techniques have to deal with complex setup,
multiple execution scenario and difficulty to cover all the de-
pendencies on both client and server side. The J2EE platform
also make static techniques difficult to apply on application
due to three problems. First, they are multi-language. A typical
J2EE application combines several languages: (1) Java, for
both server and client code (embedded in HTML, JSP, or JSF
tags), (2) JavaScript, on the client side, embedded in HTML,
JSP, or JSF tags, (3) various property files (key/value pairs),
and (4) various XML configuration files (web.xml, ra.xml, ejb-
jar.xml), all of which may introduce new dependencies.

Second, J2EE relies on dynamic binding-techniques, using
a combination of:

1) reflexion or introspection: clients can invoke methods of
classes intensionally as opposed to nominatively;

2) data-driven control: data-values control calls between
clients and servers, as with a message-driven style

3) run-time input: control-data values control calls between
clients and servers; data supplied at runtime, which
hinders data-flow analyses.

4) runtime code-generation: executable code is generated
at load-time or runtime, from configuration files.

Third, J2EE provides services that are typically offered
using inversion of control: to take advantage of the services,
client code must implement specific interfaces or callback
methods, which embody the service contract between the
clients and the containers. Obviously, calls to these callback
methods are not explicit in the client code.

These three problems hinder current static program-analysis
techniques that are limited to user supplied/developed code,
yielding incomplete program call graphs. We want to augment
the traditional unilingual static program-analysis techniques

with other kinds of analyses, involving other kinds of artifacts,
but also by codifying the services offered by containers, as
illustrated in Fig. 1.

Fig. 1: Java code analyses, e.g., must be complemented with
the analysis of (1) other program artifacts and (2) services
offered by the platform.

Previous work proposed partial solutions to the first and
second problems (Section VIII). To the best of our knowledge,
no previous work addressed the third problem.

The J2EE platform and containers simplify user code devel-
opment by one of two mechanisms: (1) by relieving developers
from the need to explicitly invoke services—using inversion of
control—or (2) by offering abstract interfaces that simply the
invocation of those services, and hide many of their internal
complexities. Either mechanism hides call relationships to,
from, or between parts of the developer code.

If the source code of the platform at hands is available,
one may be tempted to include that code in the analysis
to uncover the missing call relationships. However, current
static program-analysis techniques would still not work for two
reasons. First, it is not practical to parse the code for a J2EE
application server (millions of LOCs) to identify dependencies.
Second, they would miss dependencies embodied in services
that rely on inversion of control. To capture such dependencies
in J2EE containers, we follow three steps :

Step 1: We study the specifications/documentation of EJB
2 to identify the dependencies inherent in the services offered.

Step 2: We encode the dependencies using rules whose
condition parts characterize patterns of user code where the
dependencies apply and action parts add those dependencies.

Step 3: We apply these rules on models of J2EE applications
to add the missing dependencies to classic models already
enclosing the explicit dependencies of the source code.

III. STEP 1: STUDYING THE EJB 2 SPECIFICATIONS

J2EE applications are built atop application-servers that
offer services to their hosted applications. Developers of
the applications can focus on their business logics, while
application-servers provide the services supporting the appli-
cations. Without loss of generality, we focus in our study on
EJB 2 to illustrate how these services work and the range of
dependencies that they introduce.

We distinguish between two categories of services because
they are specified and used differently in various software
artifacts, thus they require different treatments :

Configurable services, which are not offered by default.
These services may be specified at the class/bean level, either
in deployment descriptors or in code annotations (with EJB 3),



or be invoked explicitly by user code at the instance level. This
is the case of security and transaction services. For example, a
developer can specify the roles that can invoke a bean method
in the deployment descriptor, or explicitly call the security
API method isCallerInRole(...) to check that the caller is
authorized to call the method.

General/pervasive services such as remote method-
invocation (RMI) and life-cycle management, that apply to all
hosted applications that confirm specific ’obligations’ stipu-
lated in the ’service contract’. Those obligations take the form
of an interface that a class needs to implement or extend (e.g.
java.rmi.Remote, javax.ejb.SessionBean).

Both kinds of services embody hidden call dependencies
within developer code (e.g., from client-side to server-side)
and between developer code and server code. For the sake
of space, we focus on the second kind because it offers
more challenges to encode and recover dependencies between
developer code and J2EE application-servers.

A. RMI Services

Fig. 2 shows an example two-tier client–server J2EE appli-
cation that uses EJBs (an entity bean). The client application
(class MyClient) manipulates customer objects managed by
the remote server. The blue boxes represent developer-supplied
code, which includes (1) the client-side application (MyClient
class) and (2) the customer EJB. The entity bean representing
shared, remote instances of customer objects requires (1) a
Java interface for the remotely-available public methods of
customer objects (Customer), (2) a Java interface, called
home interface, for the remote factory of customer objects
(CustomerHome), and (3) the server-side class that imple-
ments customer objects (CustomerEJB). By studying the
J2EE specification, we learn that a client-side invocation of the
method getName(...) on the variable newCust declared with
the client application method foo(...) calls the method get-
Name(...) on a service-side instance of class CustomerEJB
(one of the red broken arrows in Fig. 2), which no static code
analysis/parsing could have inferred.

Fig. 2: An example J2EE application with RMI inherent
dependencies

When the entity bean is deployed on the server, the deploy-
ment tool generates a JAR file to be included in client-side ap-
plications that contains the Java interfaces and the client-side
proxies. In our example, the JAR would contain the interfaces
Customer and CustomerHome (shown in blue in Fig. 2) and
the classes Customer Proxy and CustomerHome Proxy
(shaded beige classes in Fig. 2). A minimally ’intelligent’ type
analysis of the client code may infer that the run-time type of
the variable newCust, declared of type Customer is necessarily
Customer Proxy, because it is the only client-side class that
implements the interface Customer. However, it is not possible
to infer that a call to Customer Proxy.getName(...) ulti-
mately results into calling CustomerEJB.getName(...) on the
server side because: (1) per the recommended EJB practice,
the EJB class should not implement the remote interface (If
we did, we would have to provide default implementations for
infrastructure methods that developers rarely need to worry
about) and (2) an analysis of the code of the client-side
Customer Proxy.getName(...) will not show an invocation
of the server side Customer Impl.getName(...), as outgoing
calls are translated into generic remote-invocation objects by
the RMI infrastructure.

In summary, doing RMI in EJB makes it impossible for
basic static analyses to link client-side invocations of remote
methods to their sever-side implementations.

B. Life-cycle Management Services

Life-cycle management services manage EJBs in the ap-
plication server to speed up object creation, often time-
consuming, and to optimize resource usage. J2EE servers
maintain pools of EJB objects (class CustomerEJB in our
example) at runtime, which they assign to client applications
to reduce object-instantiation time, and return to the pool
when they are no longer used, so that can serve other client
applications. Depending on its type (entity or session, and
then stateless versus stateful session), an EJB goes through
different stages during its lifetime. Fig. 3 shows the life-cycle
of entity and stateful session beans. Space limitations do not
allow us to explain the full life-cycle for all the kinds of beans;
we will explain just enough to illustrate two additional, more
complex dependencies than the ones for RMI: 1) establishing
call relationships across different signatures, 2) the call to a
single method, client side, results into a call sequence, server
side, and 3) the distinction between guarded versus unguarded
method invocation, to be explained below.

As shown in Fig. 3, entity beans can be in one of three
states: (1) Does-not-exist state, (2) the pooled state in which
an instance is available to client applications, and (3) the
ready state in which the instance is assigned to a specific
business object and waits for calls from a client application.
In the following, we will illustrate the ’calls across different
signatures’ for the create(...)/ejbCreate(...) method; a similar
issue arises with remove(...).

With EJBs, the create(...) method is specified in the home
interface which represents the factory object for the EJBs with
a searchable JNDI name; this corresponds to the interface



Fig. 3: The life-cycle of EJBs. Red methods belong to the
home interface. They invoke the blue methods on the EJB
class. Bold methods are invoked through explicit declarations
in the client applications. Non-bold methods are invoked by
the server to manage its resources.

CustomerHome in our example (Fig. 2 in many cases). When
a client application calls a create(...) method on the client
side home proxy, an ejbCreate(...) method is called on the
server-side EJB class, CustomerEJB in our example. The
return types are not identical. Whereas the client-side/home
create(...) returns an instance of the remote object (interface
Customer in our example), the server-side EJB class version
(method ejbCreate(...) in CustomerEJB in our example)
returns an instance of a primary key class.

The second difference with RMI is the situation with
ejbPostCreate(): if the client code invokes create(...) on
the client side home proxy, the server invokes ejbCreate(...)
followed by ejbPostCreate(...), which has a similar parameter
list, and a void return type. Whereas ejbCreate(...) is meant
to initialize persistent attributes, ejbPostCreate(...) is used to
acquire/initialize additional, transient resources (e.g. connec-
tions to external resources).

The third difference is illustrated by the behavior of the
ejbActivate(...) and ejbPassivate(...), which are best ex-
plained for the case of stateful session bean. A stateful
session bean is a session bean (and thus is not meant to be
persistent) that needs to maintain conversational state between
two method invocations whereas a stateless session bean can
be switched between client applications at will. If there are
many ’assigned’ client stateful sessions, even idle ones, the
server eventually exhausts the pool. If that happens (lest we
oversimplify), it swaps out some stateful session beans to
secondary memory, according to some swap policy (e.g. least
recently used). To this end, it calls ejbPassivate(...) which
should serialize the parts of the session object’s state that the
developer cares to save, so that it can be recovered, using
ejbActivate(...), when the session is needed again. What makes
this dependency complicated is that: (1) the method is not
called/callable directly by client code, but may be called as a
side-effect of other seemingly unrelated methods (e.g. many
create(...) invocations), (2) it may involve some fairly complex
business logic (A developer must choose which fields to make
transient, which may have to be recomputed at deserialization,

and which to make persistent, which will be serialized. A
tradeoff between memory consumption and performance but
also between passivation and activation performances.) , and
(3) it is the server that makes the decision, based on its internal
state.

The three cases will be illustrated in the rules shown in the
next section.

IV. STEP 2: SPECIFYING DEPENDENCIES IN J2EE

A. Overview

Table I shows the action rules that encode all of the
hidden dependencies for the RMI and lifecycle management
services for EJB 2, which relies on the explicit definition of
interfaces. While similar underlying method calls exist in other
versions of EJB, focusing on EJB 2 illustrates the range of
dependencies that must be specified explicitly without loss of
generality. The next two subsections discuss the rules induced
by RMI and lifecycle management.

The rules use functions and predicates to identify and relate
the different components of an EJB. We will define the main
ones here. An EJB (E) is a aggregate consisting of three
components: 1) a remote interface (I), 2) a home interface
(H), and an EJB Class (C). This aggregate is defined in the
EJB deployment descriptor, which is an XML file that we
parse, along with the other project artifacts.

• isHomeInterface(T ) is a predicate that indicates that
type T is a home interface

• EJB(T ) is a function that returns the EJB of which
type T is a component, be it a home interface, a
remote interface or an EJB class. In the example of
Fig. 2, EJB(CustomerHome) is the customer EJB,
called custEjb.

• EjbClass(x) takes an EJB x as parameter and re-
turns the corresponding EJB class. In our example,
EjbClass(custEjb) returns the class CustomerEJB.

• EjbPrefix(m) returns a method whose signature is the
same as that of method m, with its name prefixed by ejb.

• isRemoteInterface(T ) is a predicate that returns true
if T is a remote interface, i.e., a subclass of EJBObject.

B. Codifying RMI Services

The rules for RMI are R1, R2 and R3. Intuitively, R1 says
”given a home interface T (CustomerHome in our example)
and a method m(...) (create(...) in our example) belong-
ing to T , add a call dependency from T.m(...) (Customer-
Home.create(...)) to C.ejbM(...), where C is the EJB class
for the EJB whose home interface is T (CustomerEJB in our
case), and ejbM(...) is a method of C (ejbCreate(...)) with
the same signature as m but for the ’ejb’ prefix.

To understand how this works, we should mention that
static code analysis on the client code will identify a call
from the client method (MyClient.foo(...) in our example) to
the home interface method CustomerHome.create(...). Rule
R1 adds a call dependency from CustomerHome.create(...)
to CustomerEJB.postCreate(...). On the surface of it, this



TABLE I: Rules adding dependencies introduced by RMI and lifecycle management

Rule Condition: ∀ type T and method m of T such that Action: Add call dependency from T.m to

R1 isHomeInterface(T ), m = create(paramlist) EjbClass(EJB(T )).ejbCreate(paramlist)
R2 isRemoteInterface(T ), m = f(param1, ..., parami) EjbClass(EJB(T )).m
R3 isHomeInterface(T ), m = remove(paramlist) EjbClass(EJB(T )).ejbRemove(paramlist)
R4 isHomeInterface(T ), m = create(paramlist),

∃ method mpost = ejbPostCreate(paramlist) ϵ EjbClass(EJB(T ))
EjbClass(EJB(T )).ejbPostCreate(paramlist)

R5 isHomeInterface(T ), isEntity(EjbClass(EJB(T )),
m = create(paramlist)

EjbClass(EJB(T )).setEntityContext(ctx :
EntityContext)

R6 isHomeInterface(T ), isSession(EjbClass(EJB(T )),
m = create(paramlist)

EjbClass(EJB(T )).setSessionContext(ctx :
EntityContext)

R7 isHomeInterface(T ), m = remove(paramlist) EjbClass(EJB(T )).unsetEntityContext()
R8 isRemoteInterface(T ), m = f(param1, ..., parami),

∀ obj instance of T s.t.isPassive(EJB(T ))
EjbClass(EJB(T )).ejbActivate()

R9 isHomeInterface(T ), m = create(paramlist),
∀ obj instance of T s.t. isActive(EJB(T )), isPoolSizeLow(SERV ER)

EjbClass(EJB(T )).ejbPassivate()

R10 isRemoteInterface(T ), isEntity(EjbClass(EJB(T )),
∀ obj instance of T s.t. isPassive(EJB(T ))

T.ejbLoad()

R11 isRemoteInterface(T ), isEntity(EjbClass(EJB(T )),
m = create(paramlist), ∀ obj instance of T s.t. isActive(EJB(T ))

T.ejbStore()

does not make sense because CustomerHome is an inter-
face, and the actual call, as indirect as it may be (through
the RMI infrastructure) is actually between Customer-
Home proxy.create(...) and CustomerEJB.postCreate(...).
But CustomerHome Proxy is only generated at EJB de-
ployment time, and the real dependency, signature wise, is at
the interface level. This call dependency enables us to link
MyClient.foo(...) to CustomerEJB.postCreate(...) in two
hops, which does link the two methods, and keeps client code
immediately dependent on the interfaces, as it should.

Using similar principles, Rule R2, by linking methods of the
remote interface to methods of the EJB class, in effect links
client-side invocations of methods of the remote interface, to
their service-side implementations–going through the remote
interface as an intermediary step.

C. Life-cycle Management Services

Section III-B explained that calls to create(...) on the
home interface result in calls to ejbCreate(...) on the bean
class. Consider the lifecycle of an entity bean as described
in Fig. 3. In fact, the calls to create(...) on the home
interface also results in the call to the method setEntityCon-
text(ctx:EntityContext) which sets the entity context. In the
other hand, the ejbPostCreate(args) method, if present, is
called after ejbCreate(...). Likewise, calls to remove(...) on
the home interface result in invocations of ejbRemove(...) and
unsetEntityContext methods. This is captured by rules R3 to
R7 of Table I. Rules R3, R4 and R6 are specialized versions
of rule R1 (see Section III-A). Whereas R1 deals with all
the methods of the home interface (including all the finders),
rules R3, R4 and R6 deal specifically with create and remove
methods of the home interface.

We now look at the behavior of ejbActivate and ejbPassi-
vate. These methods behave differently, depending on whether
the EJB is an entity bean or a stateful session bean. We
explained the behavior of these methods for stateful session
beans in section III-B, which is the more complex of the two.
For entity beans, the ejbActivate method is called when a
bean instance is pulled from the pool and assigned to an
EJB object whereas ejbPassivate is called when the bean

instance is returned to the pool. Developers can use the ejbAc-
tivate method to initialize non-persistent fields and acquire
whichever resources the bean needs, and the ejbPassivate
method to release those resources.

We mentioned in III-B that the call dependencies to ejbAc-
tivate and ejbPassivate for stateful session bean are examples
of guarded dependencies in the sense that the call relationship
between a method T.m(...) and C.ejbPassivate(...) depends
on the server alone, based on its internal state, whereas a
call to a create(...) method on the home interface will always
result into the invocation of the corresponding ejbCreate(...)
on the bean class. This is illustrated in rules R8 (activate) and
R9 (passivate). These rules use a number of predicates that can
only be evaluated at run-time, and hence the name guarded:

• isPassive(obj) is a predicate that returns true if object
obj has been passivated. For an entity bean, it means
’pooled’ state, and for a stateful session bean, it means
’passive’ or swapped out (see Fig. 3).

• isActive(obj) is a predicate returns true if object obj is
in a ready state (see Fig. 3).

• isPoolSizeLow(SERV ER) is a predicate that indicates
that the server pool size is below a given threshold.

Because our rules are evaluated against the structural repre-
sentation of the code derived from its static analysis, these
predicates, which refer to individual objects and run-time
state cannot be evaluated. Thus, in the actual implementation
(Section V), they are not used as conditions parts: they are used
as annotations or decorations on the dependency links that
are added to the KDM model so that we can distinguish them
from other call dependencies (We envision run-time scenarios
where they could be evaluated as a debugging aid to compare
expected/theoretical behavior, to actual one. It is beyond the
scope of this paper).

Another important aspect when dealing with an entity bean
is the synchronization of its persistent fields with the values
stored in the database. The EJB container synchronizes these
fields by invoking the ejbLoad and the ejbStore methods of
the EntityBean interface. The ejbLoad method refreshes the
fields from the database while the ejbStore method writes the
fields to the database: In container managed persistence, the



ejbLoad notifies the bean instance that it has been synchro-
nized with the contents of the database. With bean managed
persistence (BMP), ejbLoad synchronizes the fields of the
bean instance from the database. The ejbStore method is
called after the bean instance has been saved to notify the
bean, whereas with BMP, it is this method that does the saving.

There are several “moments” for these methods. For
ejbLoad: (1) Following a bean instance activation, when a
bean instance moves from pooled state to a ready state (see
Fig. 3); (2) At the beginning of a transaction. If the EJB
object is included within a transaction scope, the ejbLoad
method is called at the beginning of the transaction; and,
(3) At the beginning of business methods. If the business
method is transaction enabled, this reduces to the previous
case. However, transaction or not, we would always want the
business methods to execute on current/up-to-date object state.
It turns out that the J2EE standard does not dictate how often
ejbLoad is called–i.e. at every business method call, or more
parsimoniously–as long as objects stay current.

For ejbStore: (1) When the bean is passivated, the con-
tainer calls ejbStore first, and then ejbPassivate (With bean
managed persistence, ejbStore does the database synchro-
nization/saving itself; with container managed persistence, the
synchronization is done some other way, and ejbStore is only
used to notify the bean that it has been saved); (2) At the end of
a transaction; and, (3) As often as it needs to be called to make
sure that the object stays up-to-date. The J2EE specification
leaves it at the discretion of the vendors to decide how often.

Our goal is to characterize situations under which entity
beans are activated, passivated or synchronized (i.e. when
the EJB container calls ejbActivate, ejbPassivate, ejbLoad or
ejbStore), and to try to link them to user actions. In general,
activation happens when an EJB in the passive state receives
a call to one of its methods, and passivation happens if (1) an
EJB is idle and (2) the pool size falls below a given threshold.
Rules R8 to R11 of Table I formalize these dependencies.

V. TOOL IMPLEMENTATION

Our implementation relies on the interoperable, language-
independent and extensible Knowledge Discovery Metamodel
(KDM) to represent the various artifacts that compose J2EE
applications. We use MoDISCO, a KDM-compliant Eclipse-
based re-engineering toolkit to build a KDM representation
of a J2EE application, and RedHat’s DROOLS flexible and
reusable rule language to codify the J2EE applications-specific
dependency detection rules using a language to represent
application elements, and to execute those rules on the KDM
representation of the applications. Fig. 4 shows the architecture
of our tool: dark gray boxes represent preexisting components
that we (re)use.

MoDisco’s Discoverers Framework

Framework Dependencies Discoverer

MoDisco’s KDM Discoverer from 
Java Project

J2EE Dependencies Digger

Drools Engine
EJB-JAR Parser

KDM Generator from Deployment 
DescriptorDetection Rules

KDM Metamodel 
(Provided by Modisco)

MoDisco’s Java Model Discoverer 
from Java Project

EJB-JAR 
Metamodel (EMF)

Fig. 4: Our tool architecture

a) Building a KDM Representation of J2EE Applica-
tions: We extend MoDISCO, that implements the KDM
metamodel using the Eclipse Modeling Framework (EMF) to
handle any kind of software artifact by (1) implementing a
KDM-compliant representation of the artifact and (2) develop-
ing a tool to build KDM-compliant representations of applica-
tions, called a discoverer. MoDISCO comes with metamodels
and discoverers for Java and other common programming
languages. We develop metamodels and discoverers for other,
non-Java artifacts that compose J2EE applications, like EJB
deployment descriptors. The KDM metamodel is generic,
language-independent, and granular, so we must implement
a J2EE-specific domain specific language (DSL) on top of the
KDM metamodel to ease analyzing J2EE application models.
In particular, this DSL allows the representation of relation-
ships between beans classes and remote or local interfaces and
homes.

b) Codifying the Dependency Detection Rules: We en-
code the dependency detection rules using typical when
<condition> then <action> rules, where the condition rep-
resents a KDM model patterns and the action adds a depen-
dency to the KDM model. Fig. 4 shows the set of rules as
the light-gray component. We provide the complete set of
DROOLS rules in our companion Web site (https://github.com/
CodifyingHiddenDependenciesJ2EE18/Replication).

c) Executing the Dependency Detection Rules: We use
the DROOLS engine to execute the rules. The engine takes
as input: (1) a set of rules and (2) a set of data objects,
which come from KDM model of the application. It then
matches the condition parts of the rules against the KDM
model of the application. When a match occurs, i.e., a hidden
dependency exists, it executes the action part of the rule
to add that dependency to the KDM model. To add the
dependency we complete the call graph in the KDM model by
adding hidden dependencies as calls between methods. Listing
1 shows a sample rule to detect invocations of create(...)
methods on the home interface of an EJB from within client
application to create a dependency between the invoking EJB
client application to the corresponding ejbCreate(...) method
of the bean class. The lines after the when clause (lines 3-
5) represent the condition of the rule (i.e., the KDM model
pattern to match), while lines following the then clause show
the actions to add the dependency (lines 7-11).

VI. EVALUATION

In this section, we present the evaluation of our approach.
First, we present the applications we selected for our valida-
tion. Then, we demonstrate the correctness and precision of
our implementation in a technical validation. Afterwards, we
perform an empirical study to show that hidden dependencies
can be present in significant proportion in J2EE applications.
Finally, we illustrate the usefulness of codifying hidden depen-
dencies for maintenance tasks such as change impact analysis.

A. Data Selection

We selected 10 applications for our evaluation, presented
in Table II, links to download them are available in our



Listing 1: Rule to detect EJB invocation and linking it to the
corresponding bean ejbCreate(...) method.

1 r u l e ” Bean C r e a t e ”
2 when
3 $ e j b H o m e I n t e r f a c e : I n t e r f a c e U n i t A d a p t e r ( i s E x t e n d s ( ” j a v a x . e j b . EJBLocalHome ” ) ||

i s E x t e n d s ( ” j a v a x . e j b . EJBHome” ) )
4 $ toMethod: MethodUni tAdap te r ( g e t E n c l o s i n g I n t e r f a c e ( ) == $ e j b H o m e I n t e r f a c e ,

i sNamedLike ( ” ( c r e a t e ) ( . * ) ” ) )
5 $ c a l l : C a l l s A d a p t e r ( toMethod == $toMethod )
6 then
7 C l a s s U n i t A d a p t e r b e a n C l a s s = $ e j b H o m e I n t e r f a c e . g e t R l a t e d C o d e U n i t B y S t e r e o t y p e ( ”

BeanClass ” ) ;
8 i f ( b e a n C l a s s != n u l l ){
9 MethodUni tAdap te r method4NewCall = b e a n C l a s s . getMethodByNameAndParameters ( ”

e j b C r e a t e ” , $toMethod . g e t S i g n a t u r e P a r a m e t e r s ( ) ) ;
10 $ c a l l . c r e a t e S i b l i n g C a l l T o ( method4NewCall ) ;
11 }
12 end

replication package. Interesting open-source applications using
EJB2 are hard to find because the usage of J2EE is mostly
relevant for companies [14], which rarely publish the pro-
prietary source code of their legacy applications. Also, on-
line repositories, like GitHub, were created after the release
of EJB v3 and, thus, contain few instances of EJB v2 appli-
cations. Therefore, to find these 10 applications, we queried
SearchCode, SourceForge, Google, and GitHub with queries
for the presence of beans or deployment descriptors, which led
us to collect more than 100 applications. Then, we rejected
applications with no deployment descriptors or with missing
libraries. We also rejected simple tutorial applications with
only one bean and few classes. Consequently, we retained 10
applications. Our goal was to cover as many beans usage sce-
nario as possible, so our set contains applications of different
size, from various domains and developers, and with different
levels of dependency on beans during execution. In these 10
applications, we retained EJBPool, which we used to test the
implementation of our approach and which contains one of
each type of hidden dependencies.

B. Technical Validation

We assessed our approach with a manual validation of the
results provided by our implementation on all the applica-
tions presented in Table II. We want to assess whether our
implementation is correct and that it identifies all and only
the existing hidden dependencies. Our implementation adds
each dependency as a call instance in the KDM model of
the analyzed application. Each rules is executed once. We
manually analyzed the Java source-code and the deployment
descriptors of each application to identify hidden dependencies
and compared the results of our analysis with the obtained
KDM model. Such a manual analysis is time and effort
consuming so we only evaluated the expected missing hidden
dependencies for applications with small numbers of deployed
beans and calls leading to their home and remote interfaces.
We explored carefully all these calls for the applications task6,
EJBPool, vaza, and doalist. We manually found a total of
352 hidden call dependencies. Our tool found all and only
all the expected calls. Following, we computed the precision
of our implementation and, hence, indirectly, of our approach,
by manually inspecting 50 random call dependencies found
by our tool applied on Java Petstore, Changeset, osv45,

Springstore, Creezo and all of the 39 call dependencies found
in mqbuffer. We obtained a precision of 1 because all of the
289 call dependencies added by our tool were legitimate.

Thus, we confirmed that our implementation and, indirectly,
our approach is correct and precise.

C. Empirical Validation

We performed an empirical validation to evaluate to what
extent the studied hidden dependencies can be present in
applications relying on EJB2. We applied our tool on the ap-
plications in Table II, whose results are presented in Table III.
The first part of the table shows unguarded dependencies, i.e.,
hidden call dependencies independent of runtime conditions.
The remaining results are guarded dependencies, dependent
on runtime conditions, such as container behaviors, bean pool
sizes, numbers of clients, etc. Some of these call dependencies
may not be observed during all executions but would help
developers in debugging and maintenance, see Section I. Here,
the given percentage are computed with the number of non-
hidden dependencies as reference.

On average, we add 8% of unguarded dependencies. The
results vary between applications: 0.3% for mqbuffer but 19%
for doalist and 16% for osv45 (adding from 3,872 calls to the
24,321 found by MoDISCO). These results depend on the use
of the beans in the logic of the applications. They are high
when beans expose many methods via their remote interfaces,
for example in crezoo and osv45, and low if an application
use few beans.

While analyzing the identified hidden dependencies, we ob-
served many interesting facts. First, the method ejbPostCre-
ate() is only useful for Entity beans and not mandatory to
be implemented and, as expected, we observed that it is not
always implemented by bean classes. In all the applications,
client code rarely invokes the remove() method of the home
interface. In 6 of the 10 applications, there are no call to
this method. Consequently, unsetEntityContext() is also
uncommon because it is only invoked before remove() on
Entity beans. Application tend to use mostly Entity beans
or Session beans, but rarely both in similar quantity, except
PetStore, which showcases J2EE technology.

Concerning guarded dependencies, we observe that they
also depend on the types of beans used but on average we
add 6.7% of such dependencies. Activation and passivation-
related methods can only be invoked on entity or stateful
session beans. Activation may happen every time there is a
call to a remote method of these types of beans whereas
passivation may happen when there is a creation of this kind
of entities (for lack of space left in the pool). Loading and
storing-related methods are specific to entity beans. Loading
may happen every time there is a call to a remove method on
an entity bean, hence high numbers for creezoo and osv45. If
an application has only entity and stateless session bean (e.g.,
changeset, crezoo, doalist, osv45, and vaza), then the number
of calls to activate() is equal to that of load() and that of
passivate() is equal to that of store(). We observe that stateful
session bean are quite rare. Some applications (mqbuffer and



task6) have only stateless session beans and hence no guarded
dependencies.

For all dependencies combined, we add around 15% of extra
hidden dependencies which would have not been considered
by classic static analysis, and thus could not be exploited by
tools and developers during maintenance or evolution tasks.

TABLE II: Characteristics of the Analyzed Applications

Applications Classes/Interfaces Methods Calls Beans
Changeset 385 2,625 9,889 13
Crezoo 574 4,198 14,263 36
Doalist 21 186 246 4
EJBPool 21 83 75 4
Mqbuffer 371 3,121 13,576 16
Osv45 694 7,669 24,321 24
Petstore 346 1,964 5,664 35
Springstore 317 1,748 3,104 15
Task6 45 161 238 5
Vaza 239 1,874 6,242 3

D. Evaluation on Change Impact Analysis

To demonstrate the usefulness of codifying hidden depen-
dencies for maintenance tasks, we compare the information
provided by a model with no hidden dependencies to our
model with hidden dependencies for change impact analysis.
We compare the numbers of classes reachable through change
propagation with JRipples with both models.

JRipples is an Eclipse plugin supporting developers during
change impact analysis. It is semi-automated because it relies
on the developers’ feedback for its different phases. Each
phase is divided into steps in which developers evaluate if
a class is impacted and if a change should be propagated or
not. If developers mark a class as impacted or the change to
be propagated, then JRipples proposes to evaluate neighboring
classes iteratively. JRipples consider two classes neighbor if
there is a call dependency between these two classes, indepen-
dent of the call direction. Prior to this phase, developers can
filter and group classes into concepts for finer analysis. In the
following, we do not filter/group classes for a fair comparison.

When hidden dependencies are not codified in the model,
some classes may be missed during the change impact analy-
sis, as illustrated in Fig. 5. We observe that, starting from Cus-
tomerEJB, the dependencies to Account and AccountHome
are detected by JRipples but not the entity Bean Accoun-
tEjb although it exists: for example, when the method Ac-
count.getDetails() is called, then AccountEJB.getDetails()
is effectively executed. Consequently, in a next step of the
analysis, all classes with dependencies (hidden or not) to
AccountEJB, like ContactInformation, would be missed
(and iteratively their own dependencies in the following steps).
Missing these dependencies may hinder the developers’ main-
tenance task by requiring them to remember the dependency
between classes and propagate changes to CustomerEJB and
ContactInformation.

To evaluate how hidden dependencies may improve the
results of change impact analysis, we perform such an analysis
starting from each classes of the applications presented in
Table II. From each starting classes, we construct a graph
of classes explored with a condition on the depth n of the

CustomerEJB

ContactInformation

Order

OrderDAO

Account 
<<EJbObject>>

AccountEjb 
<<EntityBean>>

AccountHome 
<<EJBHome>>

Hidden

AccountDAO

ContactInformation

DatabaseNames

Fig. 5: Example of classes possibly explored during change
propagation from the class customerEJB in the Java Petstore
application

exploration: with n = 2, we explore the direct neighbors of
the starting class, with n = 3, we also explore the neighbors
of the neighbors...

Some of the hidden dependencies are redundant because we
consider only classes, not particular methods. Also, we do not
have to distinguish between guarded and unguarded depen-
dencies because there is at least one unguarded dependency
for each guarded dependency at the class level. Hence, they
are redundant but it does not affect the results.

Table IV shows the results with and without hidden depen-
dencies with n the maximum depth, i.e., the maximum num-
bers of classes reachable from any starting class. Following, #
explo. is the number of explorations performed for each appli-
cation and Improv. the percentage of these explorations with
hidden dependencies. Overall, hidden dependencies improve
by 42.7% the explorations.

Globally, the more an application relies on beans for its
functionalities, the more the results of change propagations
improve as shown in the columns showing the average num-
bers of classes in Table IV. For all applications, on average,
5.7% more classes are explored with hidden dependencies
from 0.3% for mqbuffer up to 127.9% for doalist.

When looking at specific application and specific depth,
we observe that the results are improved with the hidden
dependencies, for example for PetStore, as presented in the
top of Fig. 6. As the depth increases, the differences of
numbers of classes found through hidden dependencies or not
decreases. However, these differences may never become null,
confirming that some classes can only be reached through
hidden dependencies implied by the platform. For the three
applications, changeset, crezoo, and mqbuffer, we also observe
a convergence of the numbers after a certain depth as illus-
trated for Changeset, which may happen when some utility
classes, or POJO data classes, are used both by the client and
the server: at some depth, the beans are reached indirectly
even without the hidden dependencies. The results with hidden
dependencies would be better with unidirectional exploration
of the graph, for example the call hierarchy provided by
Eclipse, because there would be no indirect way to reach
the bean from the client (and vice versa). Fig. 7 provides
such an example for the method AccountEJB.getDetails()
of Petstore.



TABLE III: Number of hidden dependencies found in the dataset

Unguarded dependencies Guarded dependencies
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11
Create RMI Remove PostCreate Session Entity Unset Total Activate Passivate Load Store Total

Petstore 43 162 0 28 18 25 0 276 141 29 115 25 310
Changeset 13 381 22 11 2 11 22 462 247 11 247 11 516
Osv45 24 3740 30 24 0 24 30 3872 3740 24 3740 24 7528
Task6 5 7 0 0 5 0 0 17 0 0 0 0 0
Mqbuffer 16 7 0 0 16 0 0 39 0 0 0 0 0
Springstore 15 39 0 14 5 14 0 87 22 15 21 14 72
EJBPool 7 6 3 3 2 1 1 23 3 2 2 1 8
Vaza 61 66 15 5 56 5 5 213 5 5 5 5 20
Doalist 4 40 0 2 1 2 0 49 33 2 33 2 70
Crezoo 45 1368 0 43 2 43 0 1501 982 43 982 43 2050

TABLE IV: Summary of the Results for Change Impact

Graph Average # of classes
n # explo. Improv. No hidden With hidden

Changeset 10 3465 20.5% 123.8 125.0 (1%)
Crezoo 9 4,592 35.7% 262.3 272.2 (3.8%)
Doalist 4 63 77.8% 5.6 12.8 (127.9%)
EJBPool 5 84 79.8% 2.1 3.8 (82.8 %)
mqbuffer 11 3,710 11.8% 119.7 120.1 (0.3%)
osv45 9 4,088 70.5% 338.8 353.9 (4.5%)
Petstore 14 4459 61.7% 101.7 119.1 (17.1%)
Springstore 14 4,121 40.6% 49.0 54.8 (11.9%)
Task6 6 225 24.9% 4.3 4.7 (7.4%)
Vaza 10 2,133 58.7% 92.8 95.9 (3.4%)
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Fig. 6: Change propagation on Petstore and Changeset with
rounded percentage of improvements

VII. THREATS TO VALIDITY

Internal Validity: We cannot generalize the recall or
precision values to any J2EE applications. However, during
our manual validation, we found all the expected hidden
dependencies and no more. It is possible that both our tool
and our manual analysis missed some dependencies but we
accept this threat as unlikely. Our approach does not currently
apply to third-party J2EE frameworks, like Spring.

Construct and Reliability Validity: Our tools re-
lies on MoDISCO and is dependent of its models and
of its precision and recall. We accept this threat be-
cause MoDISCO has been used (and presumably de-
bugged) extensively. We provide all the necessary de-
tails to replicate our validation on-line (https://github.com/
CodifyingHiddenDependenciesJ2EE18/Replication), including
the rules and open-source J2EE applications.

External Validity: We only considered 10 pre-EJB 3,
J2EE applications. We do not and cannot cover all existing
hidden dependencies that may exist in J2EE applications if
they use third-party frameworks. However, our approach is

Fig. 7: Call hierarchy from a bean method in Eclipse without
(top) and with (bottom) hidden dependencies

extensible (1) to new rules and (2) to new technologies thanks
to its use of the KDM metamodel. Concerning our comparison
with JRipples, we are not aware of the existence of change-
impact analyses that consider hidden dependencies.

VIII. RELATED WORK

Several research works exist in the literature on the extrac-
tion of program dependencies of software systems. Some of
these works relied on KDM to model the reverse-engineered
systems and represent their dependencies. For example, Yaz-
danshenas and Moonen [15] built a homogeneous KDM
model from heterogeneous component-based systems devel-
oped in C, C++, Java and–or with configuration files in
XML. They used these models to represent intra- and inter-
component dependency graphs. However, they did not consider
hidden dependencies among components, assuming that all
components are given and that dependencies are explicit in
their source code. Following the work by Yazdanshenas and
Moonen [15], Shatnawi et al. [16] relied on KDM model
of J2EE applications to analyze Servlets and JSPs. They
described a set of difficulties in analyzing such applications
and proposed DeJEE, an approach and a tool to build de-
pendency graphs for J2EE applications. They focused only
on JSP and servlets and did not consider bean classes and
their hidden dependencies with the platform. Ricca et al. [17]
relied on dynamic analyses to extract dependencies between
PHP-based servers and their JavaScript clients to extract the
program elements relevant to a specified computation. Also,
Lucca et al. [18] proposed a reverse-engineering tool to
recover UML class diagrams, sequence diagrams, and use-case
diagrams from Web applications. However, these two works
did not provide support for explicit and hidden dependencies
between distributed components. Naumovich et al. [19] pro-
posed an approach to analyze statically J2EE access-control
policies of security-sensitive fields of server-side objects, such
EJBs. They only considered EJB fields that are accessed or
modified (directly or indirectly) by a EJB method to control



for access. They did not generalize their approach to all
hidden dependencies. Perin [20] introduced a meta-model
and reverse-engineering techniques to model the components
of multilanguage systems, focusing on J2EE applications.
They used the proposed techniques to map databases and
transactions flows and to identify hidden dependencies. How-
ever, they did not cover all types of J2EE dependencies and
only rely on inferring dependencies starting from the direct
connections defined by the programmer. Kirkegaard et al. [21]
proposed a context-free grammar to analyze output streams
of Servlets and JSP pages and verify their conformance to
specifications. They showed that their proposed grammar is
extensible to other programming languages. However, they
did not validate it on other systems and did not consider
hidden dependencies. Pinzger et al. [22] proposed a tool to
represent static dependencies in source code of Java systems.
They proposed visualization and navigation techniques but
did not analyze hidden dependencies. Some other research
works studied dependencies between specific combinations of
programming language, for example through the Java Native
Interface, which bridges Java and C/C++ code [23], [24],
[25], [26]. They studied the explicit dependencies that arise
from the use of these specific combinations and the, typically,
native interfaces between them.

IX. CONCLUSION

Legacy J2EE applications are multi-tier, multi-language
applications that rely on the J2EE platform to benefit from
infrastructural and architectural services. The platform relieves
developers from the need to design, implement, test, and
maintain these services but also hide many of the control
dependencies between the components of the platform and
the applications. Indeed, they use inversion of control and
various late-binding techniques that prevent developers and
current static code-analysis tools to identify and understand
these hidden dependencies.

We proposed a new approach to static code-analysis applied
to J2EE containers in which we specify hidden dependencies
and build models of J2EE applications, including both explicit
and hidden dependencies. Our approach uses call graphs, pro-
duced by a static-code analysis, which we do complement by
adding, programmatically, the control dependencies inherent
in the platform.

We described our approach and its implementation, which
uses MoDISCO [12], an Eclipse-based open-source implemen-
tation of the KDM. We evaluated our approach by applying
it to J2EE applications by applying our tools on 10 open-
source applications and showed that hidden dependencies
are substantially present in the analyzed applications with
an average of 15% new dependencies added compared to
traditional static analysis tool. We also showed that codifying
these dependencies may help developers during maintenance
tasks such as change impact analysis (around 6% more classes
can be explored) or tool-based refactoring.

In future work, we want to exploit the extensibility of our
approach to codify the hidden dependencies of frameworks

like Spring and possibly other languages. Moreover, we want
to exploit our model to develop tools to help practitioners to
modernize and debug their applications.
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