Refactoring Monolithic Object-Oriented Source Code to Materialize
Microservice-Oriented Architecture.

Pascal Zaragozal*z, Abdelhak-Djamel Seriai!, Abderrahmane Seriai?, Hinde-Lilia Bouziane!, Anas
Shatnawi’, Mustapha Derras?
I LIRMM, CNRS and University of Montpellier, Montpellier, France

2Berger-Levrault, France
{zamgoza, seriai, bouziane}@lirmm.fr, {abderrahmane.seriai, anas.shatnawi}@berger—levrault.com

Keywords:

Abstract:

Microservices, Monolith, Modernization, Reverse Engineering, Refactoring, Software Architecture

The emergence of the microservice-oriented architecture (MSA) has led to increased maintainability, better

readability, and better scalability. All these advantages make migrating a monolithic software towards an MSA
an attractive prospect for organizations. The migration process is recognized to be complex and consequently
risky and costly. This process is composed of two phases: (1) the microservice-based architecture recovery
phase and (2) the transformation (i.e. materialization) phase. In this paper, we propose a systematic approach
to transform an object-oriented monolithic application towards an MS-oriented one by applying a set of trans-
formation pattern. To validate our approach we automated it with our tool MonoToMicro, and applied it on a
set of monolithic Java applications to be migrated towards microservices-based ones.

1 INTRODUCTION

The microservice-oriented architecture (MSA), with
its capabilities for quick deployment, better scala-
bility, and maintainability, is a recent architectural
style that has appeared to take advantage of the
Cloud (Richardson, 2018). MSA allows the devel-
opment of applications as a suite of small services,
each running in its own process and communicat-
ing through lightweight interfaces (Lewis and Fowler,
2014), (Newman, 2019). Individually, each microser-
vice can be technologically independent, function-
ally autonomous while guaranteeing its autonomy
with regard to their manipulated data. As a conse-
quence, this results in a more manageable codebase as
each microservice can be managed by a smaller team
(Baskarada et al., 2020).

In contrast, the monolithic architecture style in-
volves building the server-side application as a sin-
gle logical executable unit (i.e. monolith) (Lewis and
Fowler, 2014). These monoliths can become quite
large and complex and thus harder to maintain. Fur-
thermore, a change to a small part of the application
requires rebuilding and redeploying the entire mono-
lith (Soldani et al., 2018). When deployed and run-
ning, increasing workloads requires duplicating the
entire application. This is a very resource-intensive,
as every part of the application must be replicated

even though all of the application is not needed (Sel-
madji et al., 2020).

This paradigm shift from the monolithic style to
the MSA-based one resulted in a demand for migrat-
ing these monolithic legacy systems towards an MSA.
This migration process includes: (1) the recovery of
a MSA-based architecture of the existing application,
(2) the transformation of the monolithic source code
to be conforms to MSA principles.

Many approaches have been proposed to address
the first phase of the migration process by partitioning
the OO implementation of a given monolithic appli-
cation into clusters of classes that can be transformed
and packaged as microservices in the second phase.
Although the resulting clusters help understand the
target MSA, the source code must be transformed to
conform to the MSA style (service-based, message-
oriented communication, etc.).

The goal of the second phase of the migration
is to transform the monolithic source code to cre-
ate runnable microservices that conform to its target
MSA, while preserving the business logic of the ap-
plication. In the case of OO applications, the primary
difficulty is to transform the OO dependencies be-
tween the clusters of classes into MSA ones. These
transformations must adhere to refactoring principles
(i.e. preserve the business-logic) without degrading
the performance. However, despite the importance

ContentProvider

DisplayManager + instance . ContentProvider

+ ecreates DispiayManager() ——— CONENMPIOVIOSE, oo nctance(): ContentProvider

+displayManager 1
+ manageContent{)

1 J: displayManager
1

+ pop(): Content

+ push{content : Content)
+ screen 1| + contentProvider

Screen

1.*| +content
+ gcreates Screen() Content

+ display(content - String) # content: String

+ getContenty): String

Clock
Message

+ xCreates Clock()

,7 + getContent(): String

TimeZone

- super : IContent
+ «Creates Message()
+getContent () : String

+time : Integer GpsLocation

= gcreates TimeZone() - latitude - Integer

+ gcreates TimeZone(cod : Integer) - longitue - Integer

+ gefTime(): Integer + getGps()

Figure 1: Information Screen class diagram inspired (Al-
shara et al., 2016)

of the second phase of the migration (i.e. costly and
error-prone), and to the best of our knowledge, no ap-
proach to automate this phase has been proposed.

In this paper, we propose a systematic approach
to transform an OO application from the monolithic
style to an MSA one based on a set of transformation
patterns. This set of transformation patterns create
microservice-based communication mechanisms that
preserve the semantic of the monolith while conform-
ing to the principles of the MSA (e.g. message-based
and data-oriented). Furthermore, we propose an au-
tomated process, and a tool, that applies our system-
atic transformation approach. Finally, we apply our
approach on a set of monolithic applications to de-
termine whether this approach is able to refactor the
code while preserving the business logic and not neg-
atively affect the performance of the application.

2 MATERIALIZING
MICROSERVICES FROM AN
OBJECT-ORIENTED
APPLICATION

The overall objective of migrating a monolithic ap-
plication is to produce structurally, behaviorally, and
operationally valid microservices. Particularly, we
define a microservice as one that follows the com-
monly accepted definitions which include structural
and behavioral characteristics such as ”small and fo-
cused on one functionality”, structural & behav-

ioral autonomy”, and “data autonomy” (Lewis and
Fowler, 2014). Additionally, operational characteris-
tics include “running on its own process”, ’commu-
nicate with lightweight mechanisms”, and ”automati-
cally deployed” (Lewis and Fowler, 2014). The struc-
tural and behavioral characteristics are often used to
guide the recovery of the architecture. While the oper-
ational characteristics cannot be used to guide the re-
covery of the microservice-oriented architecture, they
can be used to guide the transformation phase.

The migration of a monolithic application towards
a MSA is a process that can be divided into two
phases: (1) microservice architecture recovery from
an OO monolithic source code and (2) the transforma-
tion of the monolithic source code towards the MSA.

2.1 Motivating Example: Information
Screen

To better illustrate the problems we face during the
migration process, we use throughout this paper an
illustrative example of a display screen management
system (e.g. an information panel in an airport). It is
composed of the DisplayManager class that is respon-
sible for handling the information to be displayed on
the Screen class (see Fig 1). It does so through a Con-
tentProvider class that implements methods for stack-
ing content such as incoming messages (i.e. Message
instances) or the current time (i.e. Clock instances).
Finally, The Clock class uses an instance of the Time-
zone class to get the time based on its GPS location.

2.2 Microservice-based Architecture
Recovery

This migration phase aims to decompose the classes
of a monolithic application into clusters which will
form the basis of a structurally and behaviorally valid
microservice. Existing approaches propose different
clustering techniques to maximize the quality of the
microservices by maximizing the cohesiveness of the
classes within a microservice while minimizing the
coupling between microservices.

Figure 2 shows the results of applying a microser-
vice recovery approach on the “Information Screen”
system presented as motivating example. The recov-
ery identifies 5 clusters, where each cluster contains
one or more classes. In our example, the microservice
candidate MS1 is responsible for managing the dis-
play of various content on a screen, through its classes
DisplayManager and Screen. A cluster is composed
of two types of classes: internal and edge classes. An
internal class is a class which does not contain any

dependencies with classes belonging to another clus-
ter (e.g. Screen and GpsLocation). On the other hand,
an edge class is a class which contains at least one
dependency with a class from another cluster. These
dependencies can be of any type (e.g. method invoca-
tion, constructor calls, or inheritance).

MS 2
MS 1 ContentProvider
DisplayManager

+instance : ContentProvider

+ contentProvide|
displayManager

+ gcreates DisplayManager() — = + getinstance() ContentProvider
+ manageContent()
1 l+ displayManage
1

+ pop()- Content
+ push(content - Content)

+ screen 1| + contentProvider|

S 1.7] + content

+ «creates Screen() Content

+ display(content - String) # content: String

+ getContent(): String

MS 3 A &

Clock | I—\
‘ MS 4

+ gcreates Clock() Message

,—— + getContent(): String
| VS5

TimeZone

- super - IContent

+ acreates Message()

+ gefContent () - String

+ time : Integer GpsLocation

+ creates TimeZone() -lalitude - Integer

+ xcreates TimeZone(cod : Integer) -longitude - Integer

+ getTime(): Integer + getGps()

Figure 2: Recovered Microservice Architecture for the In-
formation Screen application.

2.3 Transforming OO Source Code
Towards an MSA One

The transformation phase involves materializing the
identified MSA from the architecture recovery phase.
It involves transforming object-oriented source code
towards a MSA one. During this phase, each recov-
ered cluster of classes is placed into its own microser-
vice (i.e microservice encapsulation).

However, edge classes (e.g. DisplayManager,
Clock), by definition, contain dependencies towards a
class belonging to another cluster. These direct struc-
tural dependencies between the classes of different
microservices are called microservice encapsulation
violations. Before a microservice can be fully encap-
sulated, all violations must be resolved through refac-
toring methods which transform all OO-type depen-
dencies into MS-type ones.

In this phase, we focus on the operational charac-
teristic of an MSA to use message-oriented communi-
cation between different microservices. lL.e., all pro-
cedural calls between classes belonging to different
clusters (e.g. the method calls between DisplayMan-
ager and ContentProvider) must be restricted to a set
of provided and required interfaces that define both

the web services it provides and those it consumes.
Furthermore, in an MSA, inter-process communica-
tions (IPC) calls are limited to value-based communi-
cation. lL.e., only primitives and serialized data may
be exchanged between microservice. However, a pro-
cedural call may pass object references between the
invoking object and the invoked one. To fully encap-
sulate microservices, the mechanism of instance shar-
ing between microservices must be resolved.

Beyond procedural calls there are other implicit
dependencies between clusters that must be addressed
to fully encapsulate the microservice candidates. The
main OO mechanism that must be addressed is the
inheritance mechanism. An inheritance violation ap-
pears when a class and its super-class are placed in
different clusters (e.g, between Message and Con-
tent).

Lastly, operational characteristics of a microser-
vice in which it must run on its own process and be
deployable automatically, require an additional task
of transformation. To conform to these two character-
istics each microservice must be defined in their own
independent project and they must be configured to
generate their own deployable image. Both of these
tasks must be addressed after each microservice have
been properly encapsulated. In this paper, we focus
on the code transformation phase that takes place af-
ter recovering the MSA.

3 MONOTOMICRO: A
SEMI-AUTOMATED
REFACTORING APPROACH

The goal of this approach is to transform an existing
monolithic object-oriented source code to a MSA one
by encapsulating the clusters identified in the first mi-
gration phase. To do so, we define a process com-
posed mainly of four steps as presented in Figure 3.
These steps include: (1) detecting encapsulation vio-
lations, (2) healing encapsulation violations, (3) pack-
aging microservices and (4) deploying and container-
izing microservices.

Step (1) involves detecting encapsulation viola-
tions that occur between clusters of classes which
contain OO-type dependencies (e.g. instance cre-
ation, method invocation, and inheritance) to classes
belonging to another cluster. These violations must
be detected before they can be resolved. For each en-
capsulation violations, detection rules are defined and
applied on the clusters.

In step (2), "Healing encapsulation violations”, a
set of transformation patterns is applied to the iden-

Detecting
encapsulation
violations

= S

Healing encapsulation
violations

Sy

Source code and Encapsulation violations
identified MS

architecture

e o

R o o0
Violation-free source
code of microservices

Deploying and
containerizing
microservices

A A

k]

Containers
corresponding to
microservices

Packaging
microservices

Projects corresponding
to microservices

Figure 3: The Transformation Process using the MonoToMicro tool.

tified violations. As certain transformation patterns
would create different additional violations, a trans-
formation order is required to resolve all violations.

Next, in step (3), the violation-free microservices
are packaged. To this end, a project is created for
each microservice where the source code is generated.
Then, the file structures and project dependencies are
generated automatically.

Finally, in step (4), the microservice projects are
containerized by generating instantiable images. For
each microservice, an image description file is gen-
erated. In addition, a composition file is generated,
which organizes and deploys all the microservices to-
gether.

In this paper, we focus on the first two steps of the
transformation phase which contain the main scien-
tific obstacles mentioned previously. More precisely,
we focus on proposing a systematic approach to trans-
form an OO application from the monolithic style to
an MSA one, a set of transformation patterns, and an
automated process that applies our systematic trans-
formation approach. In Section 4, we present our
first contribution, our approach to systematically de-
tect microservice encapsulation violations. In Section
5, we present our second contribution for systemat-
ically healing microservice encapsulation violations
through the use of transformation patterns. We leave
the last two steps of the transformation phase for the
implementation and we describe them in the section 6
along with the experimentation.

4 DETECTING MICROSERVICE
ENCAPSULATION VIOLATION

To materialize the recovered microservice candidates
from the source of object-oriented software, each re-
covered cluster of classes is encapsulated in its own
microservice. However, upon encapsulation, OO de-
pendencies between clusters are no longer permitted
(i.e. encapsulation violations). To facilitate the detec-
tion of these encapsulation violations, a set of encap-

sulation violation rules are proposed to analyze the
monolith:

(Rule 1): if a cluster’s method invokes a method be-
longing to a class from another cluster then it is a
method invocation violation.

(Rule 2): if a cluster’s method accesses an attribute
belonging to a class from another cluster then it is an
access violation.

(Rule 3): if a cluster’s class contains a reference tar-
geting a class from another cluster then it is an in-
stance violation.

(Rule 4): if a cluster’s class inherits a class belonging
to another cluster then it is an inheritance violation.
(Rule 5): if a cluster’s method throws, catches or de-
clares an exception defined in another cluster then it
is a thrown exception violation.

Algorithm 1: Microservice Encapsulation
Violation Detection Algorithm
Input : clusters (sets of classes)
Result: violations (a set of class couples)
1 violations <+ { };
2 foreach (cluster € clusters) {

3 foreach (class € cluster) {
4 foreach (dependency € class) {
5 if ((dependency — targer) ¢ cluster)
then
6 violation
(class,dependency — target);
7 end
8 }
o |}
10 }

11 return violations;

These rules are applied on the AST representation
of the OO source code. Using the target architecture
description, the AST nodes that represent the classes
in the OO source code are partitioned into clusters.
Finally, the detection algorithm is applied on the clus-
ters that are being encapsulated.

Algorithm 1 presents the procedure for detecting
the encapsulation violations in each cluster. For each

cluster, it traverses each individual class and checks
field accesses, method invocations, and type refer-
ences. Each broken rule is represented as a typed vi-
olation based on the rule that was broken and is at-
tributed to the cluster that is the source of the viola-
tion. Once each recovered cluster has been analyzed,
the encapsulations violations can be healed.

S HEALING ENCAPSULATION
VIOLATIONS

To achieve the encapsulation of these microservices,
the violations identified in the previous steps must
be healed through the application of transformation
rules. These transformation must either completely
heal a violation or reduce it to another solvable type.
We propose a set of transformation rules to heal the
encapsulation violations identified in the first step.
As mentioned previously, the encapsulation viola-
tions are as follows (1) attribute access, (2) method
invocation, (3) instance creation, (4) and inheritance.
We conclude by providing an order for resolving each
type of violation to avoid creating more violations
during the refactoring process.

5.1 Attribute Access

The direct attribute access violation involves direct
access of attributes between classes of different mi-
croservices. It can be eliminated by applying the get-
ter/setter pattern, which involves (1) limiting the ac-
cess to the attributes to within its own class, (2) adding
a method for returning the value of the attribute and
a method for modifying the value of the attribute,
and (3) refactoring the business logic to replace direct
read/write of the attributes with method invocations
to the get/set methods. This refactoring eliminates the
direct access of attributes between classes of different
microservices but creates a method invocation viola-
tion in its stead.

5.2 Method Invocation

The first encapsulation violation covered is the one
caused by method invocation. To remove method
calls between classes belonging to different microser-
vices, they are refactored into interface-based calls.
Consider our motivating example, where the Display-
Manager invokes a method from ContentProvider de-
picted in Listing 1. For DisplayManager that uses the
ContentProvider, both a required and a provided in-
terface (IContentProvider) are created. The required
interface is defined in the microservice of the class

DisplayManager and the provided interface is defined
in the microservice of the class ContentProvider. The
references of the ContentProvider in DisplayManager
are replaced with a reference towards the required in-
terface IContentProvider (see Listing 2).

1| public class DisplayManager {
2 public ContentProvider cp;

4 public void manageContent () {

5 String content = cp.pop().getContent(); ...
6 }
70}

8| public class ContentProvider {

10 public Content pop(){...}
1|}

Listing 1: Method Invocation Dependency in Java code.

12| public class DisplayManager {
13 public IContentProvider cp;

15 public void manageContent () {

16 String content = cp.pop().getContent ();
17 }

18]}

19 public class ContentProvider implements
IContentProvider{...}

Listing 2: Decoupling method invocation by creating an
interface.

Nevertheless, ContentProvider remains inaccessi-
ble to DisplayManager via the required interface. As
microservice can only interact through inter-process
communication protocols, an additional technologi-
cal layer must be added. In the microservice with
the provided interface, a WebService class is created
to implement the interface and to expose the meth-
ods of ContentProvider to other microservices. For
each publicly-available method of ContentProvider, a
method is created in the WebService that acts as the
intermediary to receive a request, forward it to the
real method, and return the result of the operation.
In the microservice with the required interface, a We-
bConsumer class is generated which implements the
interface by preparing the network calls to its corre-
sponding WebService class.

5.3 Instance Creation and Handling

After fragmenting the monolithic code into differ-
ent microservices (i.e. clusters of classes), some in-
stances can be created in one microservice and used
(i.e. referenced) in others. To remove this type of vi-
olation, it is necessary to provide adequate answers to
the following two questions: (1) How do we create
an instance of a class belonging to another microser-
vice? (2) When a given instance is referenced in sev-
eral microservices, how do we ensure the sharing of

this instance while preserving the business logic of
the application? These two questions are answered in
two parts.

5.3.1 Instance Creation

To answer the first question, we propose a transfor-
mation combining two design patterns: the Factory
Pattern and the Proxy Pattern. To address the instan-
tiation of objects, we replace the instantiation of Con-
tentProvider by the class DisplayManager with an in-
terface acting as an object factory. This interface de-
fines a method for each constructor of the Content-
Provider class. For simplicity, the same provided/re-
quired interfaces defined in both microservices are
used to define the object factory methods and the pub-
lic methods of the ContentProvider class. The meth-
ods of this factory are implemented in the WebService
class and call the corresponding constructor.

MS 1 M52
WebService
WebConsumer

+ createContentProvider() |ContentProvider
+ createContentProvider()
+ getinstance(): ContentProvider - i
+ getinstance(): ContentProvider > + wrareater> ConientProvider)
+pop(): Content + getinstance(): ContentProvider

+pop(): Content

+ pushicontent : Content) + pop(): Content

+ pushicentent - Content) ;
T ContentProvider + push(content - Content)
DisplayManager +instance ContentProvider — r==-==ss==smmeees Q
+ «create» DisplayManager() + =<create=> ContentProvider() J—

+manageContent()
1 l~ displayManager
1

+ getinstance(): ContentProvider | | content: String

+ pop(): Content —
+ getContent(): String
+ screen + pushicontent : Content)

Screen

+ wcreates Screen()

+ display(content * String)

Figure 4: Replacing the class instantiation with the Fac-
tory Pattern (in yellow the monolith’s class, and in green
the classes created during the transformation).

The next step towards transforming the instance
creation violation is based on the Proxy Pattern. The
intent of the proxy pattern is to provide a surrogate or
placeholder for another object to control access to it.
In Figure 5, the proxy class (ContentProviderProxy)
is a surrogate for the real class (ContentProvider) and
acts as the surrogate for all method invocations. The
role of the proxy class is to hide the absence of the
class with which it is associated and which is ref-
erenced in one microservice and defined in another.
Thus, it constitutes the place where calls to the class
or its instances defined outside the microservice are
transferred. Thus, for any class referenced in one mi-
croservice and defined in another, a proxy class is cre-
ated in the microservice that references it. This class
will have the same name as the real class, the same
list of public methods and the same list of construc-
tors. However, the implementations of its methods
and constructors are different from the original class.

Instead, the proxy class uses the WebConsumer class
to interact with the real class definition.

5.3.2 Instance sharing

To preserve the business logic of the application, we
propose a strategy to share an instance of a class de-
fined in one microservice between several microser-
vices. Furthermore, the proxy class handles the in-
stances of this class. To differentiate, between the
proxy class and the real class, the instances of the
proxy class are called proxy instances, and instances
of the real class are called concrete instances. A proxy
instance has no state and they only reference their
concrete instance. Each concrete instance is refer-
enced by its proxy instances via the same unique ref-
erence, and any operation on a proxy instance is trans-
ferred to its concrete instance. Finally, all exchanges
of the concrete instance (e.g. as a parameter, in or
out) between the microservices are transformed into
an exchange of the unique reference of the concrete
instance.

MS 1 MS 2

WebConsumer Web Service

+ createContentProvider() + createContentProvider()

—> + getinstance(): ContentProvider + getinstance(): ContentProvider —

+ pop(): Content + pop(): Content

+ push({content : Content) + push({content : Content)

|

IContentProvider

+ «<=create=> ContentProvider()

+ getinstance(): ContentProvider

+ pop(): Content

+ push({content : Content)
|implements

ContentProviderProxy

L— +token: int

+ «<=create=> ContentProvider()
+ getinstance(): ContentProvider
+ pop(): Content

+ push({content : Content)

1

DisplayManager

+ «Creates DisplayManager()

+ manageContent()

ContentProvider

+instance : ContentProvider

+ <<create== ContentProvider()
+ getinstance(): ContentProvider
+ pop(): Content
+ push({content : Content)
I'ﬂF-E"’E'\[;E
v
IContentProvider
+ <<create== ContentProvider()
+ getinstance(): ContentProvider
+ pop(): Content

+ pushcontent : Content)

Database

+ storeConcretelnst() : int <

+ getConcretelnst(int): Content

Figure 5: Replacing access to an object with the Proxy Pat-
tern.

We implement the strategy as follows: A class is
implemented to store all instances created in a mi-
croservice. When an concrete instance is created in
a microservice through one of its factories, it sends
the object to the corresponding storage class (in Fig

5, the Database class) to preserve it and this storage
class returns a token for accessing the object. The mi-
croservice returns the token via its web service to the
proxy instance, which stores it. Afterward, whenever
the proxy instance receives a request, it transfers the
request along with the token to the appropriate web
service. The token provides the context whenever the
web service is consumed, and the web service loads
the concrete instance and invokes the corresponding
method for that instance.

Furthermore, complex objects may be passed as a
parameter between microservices. As microservice-
type communication limited to passing simple data
types such as strings and integers, we need to trans-
form this type of exchange between microservices to
be able to preserve the consistency of the application’s
business logic. A microservice may send or receive an
object of class not belonging to it, and a microservice
may send or receive an object of class that belongs to
it.

For each situation, a token is passed between the
microservices, but depending on the scenario the to-
ken is handled differently.

1. When a microservice receives an object of a class
that does not belong to it, the microservice creates
the relevant proxy and stores the token within it.

2. When a microservice receives an object of a class
that belongs to it, the microservice uses the token
to fetch it from its storage class.

3. When a microservice sends an object of a class
that belongs to it, it must store the object and send
the token.

4. When a microservice sends an object of a class
that does not belong to it, the microservice must
extract the token from its proxy and send it.

This approach enables the passing of complex ob-
jects between microservices, while the owner of the
class handles the instances for other microservices.
When a microservice receives a token, it is able to
access the relevant object via the proxy class.

5.4 Inheritance Relationship

The inheritance violation is caused when a class that
inherits from another class belonging to a different
microservice are encapsulated. To heal this encap-
sulation violation, we propose a two-step transforma-
tion process inspired from (Alshara et al., 2015): (i)
Uncoupling the child/parent inheritance with a double
proxy pattern. (ii) Recreating subtyping via interface
inheritance.

The inheritance link between two classes belong-
ing to two different microservices contains several

mechanisms that must be reproduced during the trans-
formation process. The first mechanism is the exten-
sion of the definition of the parent by the child. A
child class has access to the parent’s attributes and
methods. Furthermore, it may override the parent’s
methods. Finally, both child and parent method defi-
nitions may access each other’s methods through the
use of reference variables to the parent object or itself.
The second mechanism that must be reproduced is
the concept of polymorphic assignment. To preserve
the first mechanism, we propose a double proxy pat-
tern inspired by the work presented in (Alshara et al.,
2015). In (Alshara et al., 2015), the authors propose
a double delegate pattern to preserve the inheritance
between the child and its parent class, residing each
in a different components.

With this approach, when a child object is created,
a parent object is also created as an attribute within
the child object. The child class is refactored to for-
ward invocations of any of its parent methods (e.g.
using ’super’ in JAVA) to its parent object attribute,
which acts as a delegate. Furthermore, the child ob-
ject is also stored in the parent object and acts as a
delegate to preserve the dynamic calling of overrid-
den methods (i.e. ’this’ in JAVA). This effectively re-
duces the inheritance encapsulation violation into an
instantiation violation and a method invocation viola-
tion which can be healed at a later point. When the
parent class is abstract, the authors apply a proxy pat-
tern in which the proxy class inherits from the parent
class. The child class can then instantiate the proxy
class as its delegate.

When this approach is applied in the context of
microservices it necessitates two proxy classes as the
delegate pattern creates an instance violation when
the child accesses the parent object and vice versa.
This is valid whether the parent is an abstract class
or not. However, this approach requires refactoring
the internal code of the child (and parent) class and
requires informing the developer to use the delegate
pattern instead of the native implementation. Instead,
we propose a revised version that treats inheritance as
a service more than an object, and reduces the refac-
toring of business classes.

5.4.1 Decoupling the Child/Parent inheritance

To transform the inheritance violation, the inheritance
link between the child and parent classes must first
be decoupled. First, a proxy class (e.g. ContentCon-
sumer) is created and implements the methods de-
fined by the common interface (IContent) extracted
from the parent class. This class will act as the par-
ent delegate for the the child class. The child class
is refactored to extend it (e.g ContentConsumer) in-

stead of the parent class. Then, another proxy class
(e.g. MessageConsumer) is defined to extend the par-
ent class, and acts as the child delegate for the parent
class. Figure 6 illustrates the severance of the inheri-
tance link between the child (Message) and the parent
classe (e.g. Content). However, the business logic
between Message and Content is not preserved.

5.4.2 Recreating Subtyping through proxy
inheritance

To preserve the internal logic between the child and
the parent classes, the proxy classes are exposed as
web services (as seen in section 5.3). This results in
the creation of two web services (Figure 6). The par-
ent proxy (e.g ContentConsumer) consumes the Par-
ent web service upon creation. This has the effect of
creating an IContent instance that acts as the super-
class delegate. Whenever a method defined by the
parent class is invoked by the child object, the par-
ent object will be invoked via the parent web service.
Furthermore, when the parent class references the in-
stance, it will invoke the child object through the child
proxy (e.g MessageConsumer) object.

5.4.3 Recreating Polymorphic Assignment
through Interface Inheritance

Finally, the polymorphic mechanism is recreated by
defining a child interface (e.g IMessage) which ex-
tends the parent interface (e.g. IContent), and which
will be implemented by the child class (see Figure 6).

MS 2

Content

content: String

+ getContent(): String

MessageConsumer 5 ContentWebService

+ wcreates Message() IContent # content: String

+ getContent () : String + getContent(): String + getContent(): String

MS 4

MessageWebService IContent ContentConsumer

+ xcreates Message() + getContent(): String s getContent(): String
+ getContent () - Siring

IMeiaqe Message

+ acreates Message() [¥°| + «creates Message()

+ getContent () : String + getContent () : String

Figure 6: Polymorphic assignment can be recreated by ap-
plying an interface inheritance between the Parent Interface
and the Child Interface.

Inheritance Instance

Violation @ Violation

Reducing the violation with Reducing the violation with
a Proxy Inheritance Pattern a Getter/Setter Pattern

Method -
Invocation All Violations

@ Violation @ Healed

Reducing the violation with
a Getter/Setter Pattern

iiccess Violation

Reducing the violation with
a Getter/Setter Pattern

Figure 7: The transformation order of each microservice
encapsulation violation.

5.5 Healing Violation Order

Once all the different microservice encapsulation vi-
olations have been identified, the transformation rules
can be applied to completely encapsulate the clusters
into their microservices. However, the application of
these transformations in the wrong order may pro-
duce more encapsulation violations as a result (e.g.
the application of the transformation for an attribute
access violation produces a method invocation vio-
lation). The goal of this subsection is to present an
order for applying these transformations to solve all
encapsulation violation in one iteration.

Therefore, we propose an order of transformation
to heal all these encapsulation violations which is pre-
sented in Figure 7. First, the attribute access viola-
tion is reduced as it adds public methods to its class
that may be further refactored by inheritance viola-
tion. Then, the inheritance violations are reduced to
an instance violation so all instance violations can
be healed together. These instance violations are re-
duced to method invocation violations. Finally, the
remaining method invocations violations are trans-
formed into a set of web services. In the next sec-
tion, we apply this transformation order when healing
the encapsulation violations identified in the selected
applications.

6 EVALUATION

6.1 Data Collection

To establish our experiment, we select a set of mono-
lithic applications of various sizes (small, medium
and large). We identified 6 applications whose source
code is object-oriented and publicly available. The
seventh application, Omaje, is a closed-source legacy
application by Berger-Levrault, an international soft-
ware editor. Table 1 provides some metrics on these
applications.

Table 1: Applications on which the experiment was con-
ducted.

Application name No of classes %ﬁl(l)e(sj)() f Code
FindSportMates' 21 4.061
JPetStore? 24 4319
PetClinic? 44 2.691
SpringBlog* 87 4.369

IMS® 94 13.423
JForum® 373 60.919

Omaje 1.821 137.420

6.2 Data Pre-processing: Microservice
Identification

We used our approach, proposed in (Selmad;ji et al.,
2020) to recovery an MSA represented as clusters
of classes. This MS architecture recovery approach
is semi-automatic as it combines the information
extracted from the source code of the application
(e.g. coupling and cohesion between classes, cou-
pling compared to persistent data, etc.) as well as the
architect’s recommendations (e.g. granularity of mi-
croservices, their number, etc.). These clusters along
with the source code of the applications are used as in-
put for our approach. Table 2, refers to the extracted
architectures for each application.

Table 2: Data on the applications being transformed.

No. No. data No.

Application MSs classes violations
Findsportmates 3 2 9
JPetStore 4 9 21
PetClinic 3 7 26
SpringBlog 4 8 104

IMS 5 18 113
JForum 8 37 1031

6.3 Research Questions and their
Methodologies

To validate our approach, we conduct an experiment
with the goal of answering the four following research
questions.

Uhttps://github.com/chihweil 5/FindSportMates

Zhttps:// github.com/mybatis/jpetstore-6

3https://github.com/spring-petclinic/spring-framework-
petclinic

“https://github.com/Raysmond/SpringBlog

Shttps://github.com/gtiwari333/java-inventory-
management-system-swing-hibernate-nepal

Ohttps://github.com/rafaelsteil/jfforum2/

6.3.1 RQI1: What is the precision & recall of
MonoToMicro approach when
materializing a MSA?

Goal: The goal of this research question is to evaluate
the correctness of the resulting microservice-based
applications. By evaluating the syntactic and se-
mantic correctness, we aim to demonstrate that our
approach is able to transform the source code of a
monolithic application towards an MSA one, while
preserving the business logic.

Method: We measure the precision and the recall of
our approach based on the syntactic and semantic cor-
rectness of the transformed microservices. It stands to
reason that if the resulting MSA applications behaves
in the same way as the monolithic applications then
the business logic was preserved.

We consider that microservices are syntactically
correct if there are no compilation errors. To mea-
sure the semantic correctness, we rely on whether the
transformed microservices produce the same results
compared to the functionalities of the monolithic ap-
plications at runtime. We identify a set of execution
scenarios that are applied to both versions. We com-
pare the outputs of the monolithic application with its
MSA counterpart for each execution scenario. We
consider that the transformation is semantically cor-
rect when the outputs generated by the monolith and
the MSA are identical based on the same inputs.

When possible, the identification of execution sce-
narios is based on test cases defined by the developers
of the monolithic applications (e.g. JPetStore). When
test cases are not available, we identify a set of fea-
tures and sub-features for each monolithic application
(e.g. FindSportmates, IMS). From these features, we
establish a set of user scenarios that cover all features
of each application. These user scenarios are per-
formed on the monolithic application and the results
are saved. Then, these user scenarios are performed
on the MSA, and the results are compared with those
of the monolithic application. When they are identi-
cal we consider this as a passed test. Otherwise, they
are marked as a failed test.

The precision is calculated by taking the number
of tests passed by both architectures and dividing by
the number of the tests passed by the MSA. While
we calculate the recall by taking the number of tests
passed by both architectures and dividing it by the
number of tests passed by the monolith.

Due to time constraints related to the application
packaging that is highly dependent on the technology
of the monolith working with Spring, we study this re-
search question with the FindSportMates, JPetStore,

and InventoryManagementSystem applications. For
JPetStore, we ran the Selenium tests provided with the
monolithic application. For FindSportmates and In-
ventory Management System, we manually ran these
user scenarios.

Table 3: Type of violations caused by OO-type dependen-
cies between microservices.

Application No. No. Inheri- No. ‘
Instances tances Exceptions
Findsportmates 9 0 0
JPetStore 20 0 0
PetClinic 24 2 0
SpringBlog 95 7 2
IMS 110 3 0
JForum 1013 16 2

6.3.2 RQ2: What are the impacts of
MonoToMicro on the performance?

Goal: The overall goal of our approach is to mi-
grate while preserving the semantic behavior of an
application. Moreover, an important aspect of the mi-
gration is that it must preserve the semantic without
degrading drastically the runtime performance of the
application. Therefore the primary goal of this RQ is
to evaluate whether the performance impacts result-
ing from the migration of the monolithic application
to microservices are negligible when compared to the
original application.

Method: To answer RQ2, we rely on the execution
time of user requests. The execution time measures
the delay between the time when the request is sent
and the time when the response is received by the user.
We compare the execution time of both the mono-
lith and the MSA. We establish a user scenario us-
ing Omaje to compare the performance of the mono-
lithic application with its microservice counterpart.
We chose Omaje for this evaluation because its busi-
ness logic is the most complex of all 7 applications.
To evaluate the performance, we simulate an increas-
ing number of users connecting to both the MSA and
the monolith, using J Meter’ to simulate user load. As
the number of user increases, we increase the number
of instances of the microservice for both the mono-
lith and the MSA. For the monolith, this involves du-
plicating the application. For the MSA, this involves
duplicating the microservices involved in the current
scenario. We consider that the refactoring results im-
prove or maintain the quality and performance of the
original code if the execution time difference between

"https://jmeter.apache.org/

both architectures is negligible for the average user
while the resource utilization is optimized. For our
test we use a computer with an i7-6500U @ 2.5GHz
and 16GB of ram.

6.4 Results

6.4.1 RQI1: What is the precision & recall of
MonoToMicro approach when
materializing a MSA?

Table 4 shows the results of RQ1. The results show
that our approach has a 100% precision for FindSport-
Mates, JPetStore and InventoryManagementSystem in
terms of syntactic and semantic correctness. There-
fore, our approach is able to preserve the business
logic with a high precision. Furthermore, the results
show that our approach has a 100% recall for Find-
SportMates, JPetStore and InventoryManagementSys-
tem. The proposed transformation did not create a
side-effect that was detected by failed functional tests
that otherwise passed for the monolith. Therefore, our
approach is able to preserve the business logic with
a high recall. However, it should be noted that for
JPetStore the Selenide test “testOrder” failed for both
the monolithic version and the MSA version, as both
checked the pricing notation using a period as a dec-
imal separator while the testing was performed on a
computer which defaults to using a comma instead.

Table 4: Number of tests performed based on the applica-
tion and the resulting precision and recall based on those
tests.

Application No. Test Precision Recall
Findsportmates 7 100% 100%
JPetStore 34 100% 100%
™MS 36 100% 100%

6.4.2 RQ2: What are the impacts of
MonoToMicro on the performance?

Figure 8 illustrates the number of users per scenario
with the different architecture configurations. We can
see, there is a small but negligible gain in performance
upon the introduction of scaling for the MSA. The
proposed transformations from MonoToMicro does
not negatively affect the performance of the applica-
tion. Our expectations were that by introducing addi-
tional network calls the performance of the migrated
application would be affected negatively. However, in
this scenario it was not the case. This was likely due
to the parallelization aspect of scaling the requested
service. By adapting the number of instances of mi-
croservices, the MSA was able to handle the increased

requests and compensate for the additional network
layer. In fact, as the number of parallel requests in-
creased, the MSA performed better (on average) com-
pared to its monolith counterpart.

6.5 Threats to Validity

Internal Validity: First, we use static analysis
techniques to analyze and detect microservice encap-
sulation violations in the source code of monolithic
applications. This type of analysis may have two
types of impact. The first one is that static analysis
does not take into account polymorphism and dy-
namic binding when handling the instance violation.
However, we deal this by preparing the worst case
scenario where an instance dependency is created for
every sub-type. The second impact is that the static
analysis does not differentiate between the used and
unused source code which may result in creating
more services than required. The use of dynamic
analysis could reduce both impacts. But it requires
instrumenting and a considerable amount of tests.
We consider our approach to be adequate for source
code that is not based on frameworks (e.g. Spring for
java). In this sense, we do not consider, for example,
the injection of dependencies on-the-fly which is one
of the properties of this type of framework. This
type of dependency is not identified in our approach.
Also, our approach does not consider dependencies
and transformations linked to the reflexivity of
programming languages. Thus, in our experiment,
we identified and manually resolved this type of
encapsulation violation.

External Validity: First, we consider that the use of
a specific architecture recovery approach (Selmadji
et al., 2020) to have an impact on the results of the
transformation phase we highlight in the paper. We
consider that the types of dependencies identified and
their number strongly depend on the results of the ar-
chitecture extraction phase used, and the use of an-
other extraction method would impact the results of
the proposed transformation process. However, the
primary goal of this experiment is not to analyze the
impact of the produced architecture, but the feasibility
of migrating while preserving the intended behavior
of the application. Second, the proposed approach is
evaluated on monolithic applications that are imple-
mented in Java. However, the obtained results can be
generalized for any OO language. We argue for this
generalization because all OO languages (e.g. C++,
C#) are structured in terms of classes and their rela-
tionships are realized through the same mechanisms
(e.g. method calls, field access, inheritance, etc.).

Average execution time of Requests

I I T
600 |- —&— Monolith
—— MSA

| |
0 50 100 150 200 250 300
Number of Parallel Users

Avg. Execution time (ms)
(%)
S
S
T

Figure 8: Average execution time of Omaje based on the
number of users and the corresponding architecture.

7 RELATED WORK

Microservice-based Architecture Recovery: Re-
cently, many works have been done on the process of
extracting a MSA from an OO software, and several
systematic reviews have been published on the
subject (Abdellatif et al., 2021) (Fritzsch et al., 2019)
(Francesco et al., 2017). These works can be catego-
rized by the input and the process used to extract the
architecture. Works such as (Baresi et al., 2017) use
OpenAPI documentation of an application to extract
its services. Similarly, an approach is proposed
that leverages the documentation for component
recovery (Chardigny and Seriai, 2010) (Chardigny
et al., 2008). While (Selmadji et al., 2020) use both
source code and expert recommendations as input for
a clustering algorithm. (Jin et al., 2018) uses both
source code analysis and dynamic behavior analysis
to aid during clustering process. More broadly,
component recovery proposes solutions to a similar
problem. In (Kebir et al., 2012), genetic algorithms
are used to recover components from an OO soft-
ware. While in (El Hamdouni et al., 2010), relational
concept analysis is used to extract a component-based
architecture. Finally, (Shatnawi et al., 2018) uses
dynamic analysis to identify components.

Transformation towards a MSA: The goal of refac-
toring is to extend the lifetime of an existing soft-
ware product while preserving its functional behav-
ior via code transformation to improve the structure
of the source code. To the best of our knowledge,
there does not exist any work in the transformation
towards microservice that attempts to automate this
process. Both an industrial survey (Francesco et al.,
2017) and a systematic review (Fritzsch et al., 2019)
on the subject of microservice migration, indicate a
lack of tool to support the migration towards mi-
croservices. (Bigonha et al., 2012) proposes a tech-
nique for extracting modules from monolithic soft-
ware architectures based on a series of refactoring

to modularize concerns through the isolation of code
fragments. However, it focuses on the separation of
concerns and does not address the deployment of in-
dependent modules as microservices. Besides, sev-
eral works offer insights on the manual transforma-
tion such as (Fan and Ma, 2017), (Richardson, 2018),
and (Amiri, 2018). (Fan and Ma, 2017) presents an
experiment report where the authors share their mi-
gration process on an example. (Amiri, 2018) pro-
pose an extraction method accompanied by a manual
transformation to validate their approach.

8 CONCLUSION

We have proposed an approach to automate the source
code transformation phase of the process of migrating
an application from the monolithic style to the MSA
one. We focused on proposing a systematic approach
to transform an OO application from the monolithic
style to an MSA one, a set of transformation patterns,
and an automated process that applies our system-
atic transformation approach. The evaluation of our
approach revealed that the systematic transformation
were possible and created syntactically and semanti-
cally correct microservices. Furthermore, an initial
performance evaluation on an industrial case revealed
that successfully-migrated microservices were able to
scale with increased demands without degrading the
overall service. In future works, we plan to take the
lessons learned from the refactoring of these mono-
lithic applications towards MSA ones and apply them
to the identification of microservices to optimize the
performance and the structure of the MSA.

REFERENCES

Abdellatif, M., Shatnawi, A., Mili, H., Moha, N., Bous-
saidi, G. E., Hecht, G., Privat, J., and Guéhéneuc, Y.-
G. (2021). A taxonomy of service identification ap-
proaches for legacy software systems modernization.
Journal of Systems and Software, 173:110868.

Alshara, Z., Seriai, A.-D., Tibermacine, C., Bouziane,
H. L., Dony, C., and Shatnawi, A. (2015). Migrat-
ing large object-oriented applications into component-
based ones: instantiation and inheritance transforma-
tion. GPCE, page 55-64.

Alshara, Z., Seriai, A.-D., Tibermacine, C., Bouziane, H.-
L., Dony, C., and Shatnawi, A. (2016). Materializ-
ing architecture recovered from object-oriented source
code in component-based languages. ECSA, page
309-325.

Amiri, M. J. (2018). Object-Aware Identification of Mi-
croservices. In 2018 IEEE SCC, pages 253-256.
Baresi, L., Garriga, M., and De Renzis, A. (2017). Mi-

croservices identification through interface analysis.

In De Paoli, F., Schulte, S., and Broch Johnsen, E., ed-
itors, Service-Oriented and Cloud Computing, pages
19-33, Cham. Springer International Publishing.

Baskarada, S., Nguyen, V., and Koronios, A. (2020). Ar-
chitecting microservices: Practical opportunities and
challenges. Journal of Computer Information Sys-
tems, 60:428 — 436.

Bigonha, R. S., Terra, R., and Marco, T. (2012). An Ap-
proach for Extracting Modules from Monolithic Soft-
ware Architectures. WMSWM 2012, (July 2016).

Chardigny, S., Seriai, A., Oussalah, M., and Tamzalit, D.
(2008). Search-based extraction of component-based
architecture from object-oriented systems. ECSA,
pages 322-325.

Chardigny, S. and Seriai, A.-D. (2010). Software architec-
ture recovery process based on object-oriented source
code and documentation. ECSA, pages 409-416.

El Hamdouni, A.-E., Seriai, A., and Huchard, M. (2010).
Component-based architecture recovery from object
oriented systems via relational concept analysis. CLA,
pages 259-270.

Fan, C. and Ma, S. (2017). Migrating Monolithic Mobile
Application to Microservice Architecture: An Exper-
iment Report. In 2017 IEEE AIMS, pages 109-112.

Francesco, P. D., Malavolta, I., and Lago, P. (2017). Re-
search on architecting microservices: Trends, focus,
and potential for industrial adoption. In ICSA, pages
21-30.

Fritzsch, J., Bogner, J., Zimmermann, A., and Wagner, S.
(2019). From monolith to microservices: A classi-
fication of refactoring approaches. Lecture Notes in
Computer Science, page 128—141.

Jin, W., Liu, T., Zheng, Q., Cui, D., and Cai, Y. (2018).
Functionality-oriented microservice extraction based
on execution trace clustering. In 2018 IEEE ICWS,
pages 211-218.

Kebir, S., Seriai, A.-D., Chaoui, A., and Chardigny, S.
(2012). Comparing and combining genetic and clus-
tering algorithms for software component identifica-
tion from object-oriented code. C3S2E ’12, page 1-8.

Lewis, J. and Fowler, M. (2014). Microservices: a definition
of this new architectural term.

Newman, S. (2019). Building microservices: designing
fine-grained systems. O’Reilly Media.

Richardson, C. (2018). Microservices Patterns. O’Reilly
Media.

Selmadji, A., Seriai, A.-D., Bouziane, H.-L., Mahamane,
R., Zaragoza, P., and Dony, C. (2020). From mono-
lithic architecture style to microservice one based on
a semi-automatic approach. ICSA, pages 157-168.

Shatnawi, A., Shatnawi, H., Saied, M. A., Shara, Z. A.,
Sahraoui, H., and Seriai, A. (2018). Identifying soft-
ware components from object-oriented apis based on
dynamic analysis. In ICPC, page 189-199.

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J.
(2018). The pains and gains of microservices: A sys-
tematic grey literature review. JSS, 146:215-232.

