
The Journal of Systems & Software 173 (2021) 110868

G

c
a
i
b
p
s
a
t

s
n
(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

A taxonomy of service identification approaches for legacy software
systemsmodernization
Manel Abdellatif a,∗, Anas Shatnawi b, Hafedh Mili b, Naouel Moha c,
hizlane El Boussaidi c, Geoffrey Hecht b, Jean Privat b, Yann-Gaël Guéhéneuc d

a Polytechnique Montréal, Montreal, Quebec, Canada
b Université du Québec à Montréal, Montreal, Quebec, Canada
c École de Technologie Supérieure, Montréal, Québec, Canada
d Concordia University, Montréal, Québec, Canada

a r t i c l e i n f o

Article history:
Received 8 April 2019
Received in revised form 15 October 2020
Accepted 16 November 2020
Available online 20 November 2020

Keywords:
Service identification
Microservices
Taxonomy
Legacy system
Migration

a b s t r a c t

The success of modernizing legacy software systems to Service-Oriented Architecture (SOA) depends
on Service Identification Approaches (SIAs), which identify reusable functionalities that could become
services. The literature describes several SIAs. However, the selection of an identification approach
that is suitable for a practitioner is difficult because it depends on several factors, including the
goal of modernization, the available legacy artifacts, the organization’s development process, the
desired output, and the usability of the approach. Accordingly, to select a suitable service identification
approach, a practitioner must have a comprehensive view of existing techniques.

We report a systematic literature review (SLR) that covers 41 SIAs based on software-systems
analyses. Based on this SLR, we create a taxonomy of SIAs and build a multi-layer classification of
existing identification approaches. We start from a high-level classification based on the used inputs,
the applied processes, the given outputs, and the usability of the SIAs. We then divide each category
into a fine-grained taxonomy that helps practitioners in selecting a suitable approach for identifying
services in legacy software systems. We build our SLR based on our experience with legacy software
modernization, on discussions and experiences working with industrial partners, and analyses of
existing SIAs. We validate the correctness and the coverage of our review with industrial experts who
modernize(d) legacy software systems to SOA. The results show that our classification conforms to the
industrial experts’ experiences. We also show that most of the studied SIAs are still at their infancy.
Finally, we identify the main challenges that SIAs need to address, to improve their quality.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The maintenance and migration of legacy software systems are
entral IT activities in many organizations in which these systems
re mission-critical. These systems embed hidden knowledge that
s still of significant values. They cannot be removed or replaced
ecause they execute effectively and accurately critical and com-
lex business logic. Yet, legacy software systems suffer from
everal drawbacks including high maintenance costs, scalability
nd portability problems, and so forth (Lewis et al., 2005). Thus,
hese systems should be migrated to more flexible and modern

∗ Corresponding author.
E-mail addresses: manel.abdellatif@polymtl.ca (M. Abdellatif),

hatnawi.anas@uqam.ca (A. Shatnawi), mili.hafedh@uqam.ca (H. Mili),
aouel.moha@etsmtl.ca (N. Moha), ghizlane.elboussaidi@etsmtl.ca
G.E. Boussaidi), hecht.geoffrey@uqam.ca (G. Hecht), privat.jean@uqam.ca
J. Privat), yann-gael.gueheneuc@concordia.ca (Y.-G. Guéhéneuc).
ttps://doi.org/10.1016/j.jss.2020.110868
164-1212/© 2020 Elsevier Inc. All rights reserved.
architectures to retain their business values while decreasing
their maintenance costs.

The migration of legacy software systems to a Service-
Oriented Architecture (SOA) is one avenue for the modernization
of these systems. SOA allows developing complex and inter-
organizational systems by integrating and composing services
that are reusable, distributed, relatively independent, and of-
ten heterogeneous (Erl, 2008). Also over the past few years,
increasing efforts have been made to migrate legacy systems
to microservices, which are, in a SOA architecture, any ser-
vices having a single responsibility, running in their own pro-
cesses, and communicating with lightweight mechanisms (New-
man, 2015). In the following, we use the term ‘‘service’’ to cover
any form/granularity of services, including microservices.

The migration of legacy software systems to SOA is difficult be-
cause it depends on many factors, e.g., the choice of the migration
process, the service-identification approach, the desired qual-

ity characteristics of the generated services, the implementation

https://doi.org/10.1016/j.jss.2020.110868
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2020.110868&domain=pdf
mailto:manel.abdellatif@polymtl.ca
mailto:shatnawi.anas@uqam.ca
mailto:mili.hafedh@uqam.ca
mailto:naouel.moha@etsmtl.ca
mailto:ghizlane.elboussaidi@etsmtl.ca
mailto:hecht.geoffrey@uqam.ca
mailto:privat.jean@uqam.ca
mailto:yann-gael.gueheneuc@concordia.ca
https://doi.org/10.1016/j.jss.2020.110868

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

a
l
s
t
2
p
u
t

l
t
p
m
S
p

r
b
(
t
s
t
a

nd integration of the services, etc., which we discuss in details
ater. Also, the modernization of legacy systems may have some
ide effects that could affect the expected or claimed benefits of
he migration of legacy systems (Khadka et al., 2015; Wagner,
014). Such side effects could be the decrease of the system’s
erformance, users resistance to the new technology/system, the
nexpected high cost of the modernization, the increasing time
o finish the migration, etc.

An organization may adopt one of three strategies to migrate
egacy software systems to SOA. It can migrate its legacy sys-
ems through a top-down, forward-engineering strategy by: (1)
erforming a high-level decomposition of its domain artifacts, (2)
odeling the needed services that will take part of the targeted
OA, (3) implementing those services, and (4) implementing the
rocess that orchestrates all these services.
An organization may also want to use a bottom-up strategy to

e-engineer its legacy software systems to a service-oriented style
y: (1) extracting all the dependencies of their legacy system,
2) mining the existing applications for reusable functionality
hat could qualify as services, (3) packaging these functions as
ervices to enable their reuse and to delete their dependencies
o the legacy infrastructures, and (4) rewriting some existing
pplications to use the newly-identified services.
An organization may also adopt a hybrid strategy and reuse

its legacy artifacts by: (1) grouping the functions of the applica-
tions into coarse functional blocks, (2) mapping those functional
blocks to available services while deleting their dependencies
to the legacy infrastructure, and (3) implementing the process
orchestrating these services.

Service identification is central to all aforementioned three
migration strategies, and has been recognized by practition-
ers as the most challenging step of the overall migration pro-
cess (Khadka et al., 2013; Abdellatif et al., 2018). The services
identified through a Service Identification Approaches (SIAs) must
meet a range of expectations regarding their capabilities, quality
of service, efficiency of use, etc. Lewis et al. (2005), which we
also discuss in details later. To the best of our knowledge, all
bottom-up and hybrid SIAs focus solely on identifying services
in legacy software systems, not in ensuring that they can be
then called ‘‘as identified’’ by different clients immediately. In-
deed, once services become available, multiple clients may call
them simultaneously, which may and may not cause problems
in the services themselves (because they store some states) or
related databases (because they do not take into account multiple
clients/tenants). The challenges of turning such legacy code into
autonomous and self-contained services include dealing with
multi-tenancy, data consistency and statefulness. The legacy code
might have side effects that violate one or more service design
principles. These challenges must be considered after identifying
the services, as part of the whole migration process of legacy
software systems (Furda et al., 2017).

Due to the importance of SIAs and their impact on the suc-
cess of legacy migrations to SOA, the literature proposed several
approaches for identifying services in legacy systems. The selec-
tion of a SIA that is suitable for some practitioners among all
other SIAs is however difficult and depends on several factors,
e.g., the available legacy artifacts, the process of analyzing these
legacy artifacts, the available inputs, the desired outputs and the
usability degree of the approach. As a result, practitioners need
a comprehensive view of existing SIAs to select the identification
approach fulfilling their needs.

In the following, we propose a systematic literature review
(SLR) of published SIAs, with focusing on bottom-up and hybrid
approaches that use existing software artifacts. We chose to focus
on bottom-up and hybrid approaches because previous stud-

ies (Abdellatif et al., 2018; Rodriguez et al., 2013) and our own

2

preliminary study showed that companies often have only source
code as most up-to-date source of information about their legacy
software systems.

Based on this SLR, we also present a taxonomy of SIAs, i.e., a
multi-layer classification of SIAs. This classification helps practi-
tioners in selecting a suitable service identification approach that
corresponds to their migration needs. We perform our SLR using
our experience with legacy software modernization, discussions
with industrial partners, and the analysis of 41 papers retained
from a first set of 3246 papers. We validate the correctness and
coverage of our SLR through a survey and one-to-one interviews
with 45 industrial experts in legacy software-systems modern-
ization. The results show that our taxonomy conforms to the
industrial experts’ experiences, with a precision of 99%, and a
recall of 94%.

1.1. Research questions

Through our SLR, we study the SIAs following four dimensions:
the used inputs, the applied processes, the resulting outputs, and
the usability degree of the approaches. We set out to answer the
following research questions:

• RQ1: What are the inputs used by SIAs? We aim to identify
the different inputs used by SIAs that are based on software
systems analyses. We aim to classify the targeted SIAs based
on the artifacts used for the identification.

• RQ2: What are the processes followed by SIAs? We aim
to describe the processes that underlie the service identi-
fication approaches reported in the literature. This entails
gathering information about, (1) the techniques used to
identify candidate services, (2) the desired quality metrics,
(3) the direction of the identification, (4) the automation
level, and (5) the type of analysis used.

• RQ3: What are the outputs of SIAs? We aim to report infor-
mation about the generated outputs of service identification
approaches in terms of the targeted service types.

• RQ4: What is the usability of SIAs? We aim to study the
usability degree of service identification approaches in the
literature based on the systems used to validate the re-
sults, the accuracy of the identification method (when re-
ported), the tool support, and the quality of the reported
identification results.

We answer these questions and conclude that the state-of-the
art SIAs are still at their infancy. This is due to four main rea-
sons: (1) the lack of validation on real enterprise-scale systems;
(2) the lack of tool support,(3) the lack of automation of SIAs,
and (4) the lack of assessment of the quality of the identified
services. The results also show that the proposed SIAs generally
ignore the economic aspects of the identification phase such
as the implementation and maintenance costs, the re-factoring
costs, and time-to-market issues. We believe that more work
should be done to automate state-of-the-art SIAs and consider
enterprise-scale systems to validate the proposed approaches.
We also believe that regardless of the sought quality attributes,
SIAs should provide means to assess the quality of the identified
services and consider economic aspects in their identification
process.

1.2. Outline

The remainder of this paper is structured as follows. Section 2
describes our SLR methodology. Section 3 describes the inputs
used by SIAs. Section 4 describes the processes that underlie the
studied SIAs. Section 5 surveys the outputs of SIAs. Section 6
describes the usability level of these SIAs. Section 7 details the

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

v
s
F

2

s
t
t
s

p
q
o
k
a

s
D

W
o
T
t
s
f

r
s
c
c
m
c
t
s
t
t
p
i
W
f
i
W
t
T

Fig. 1. Paper selection.
alidation of our taxonomy. Section 8 synthesizes the compari-
on between the studied SIAs. Section 9 describes related work.
inally, Section 10 concludes our work.

. Search methodology

In this section, we describe the design methodology of our
ystematic literature review as well as the mechanisms and data
hat we analyze to answer our research questions. We follow
he procedures proposed by Kitchenham (2004) for performing
ystematic reviews.
Fig. 1 depicts our methodology. We first collected research pa-

ers based on search queries. We started by identifying relevant
uery terms based on our research questions and the context of
ur work: service identification, SOA, and migration. Then, for each
eyword, we identified a set of related terms and synonyms using
n online synonym finder tool1 and defined the following query:

(service identification OR service mining OR service packag-
ing) AND (migration OR modernization OR transformation OR
re-engineering) AND (legacy OR existing systems OR Object-
Oriented)

We executed this query in different scientific search engines,
uch as Google Scholar, ACM Digital Library, and IEEE Xplore
igital Library, Engineering Village, etc.
Our search queries returned a total of 3,246 unique references.
e then filtered these references, first, based on their titles, sec-
nd, based on their abstracts, and finally, based on their contents.
wo of the authors manually and independently analyzed all
he papers and then reconciled any differences through discus-
ions. We excluded from our review papers meeting one of the
ollowing criteria:

• Papers not written in English.
• Papers not related to service identification.
• Papers about top-down SIAs.
• Papers that did not propose a technique or a methodology

for service identification.
• Papers published before 2004 and after 2019.

Based on these exclusion criteria, we reduced the number of
eferences and retain 26 papers that focus on SIAs that analyze
oftware artifacts. We believe that our search string may not
over all query terms related to service identification (e.g., mi-
roservices, decomposition, restructuring, etc.) and thus we risk to
iss important studies. To minimize these threats, we (1) in-
luded in our search string the most important keywords related
o service identification, and (2) applied forward and backward
nowballing (Wohlin, 2014; Felizardo et al., 2016) to minimize
he risk of missing important papers. Forward snowballing refers
o the use of the bibliographies of the papers to identify new
apers that are referenced. Backward snowballing refers to the
dentification of new papers citing the papers being considered.
e iterated the backward and forward snowballing and apply

or each candidate paper our exclusion criteria. We stopped the
teration process when we have found no new candidate paper.
e performed a total of nine iterations and added 15 papers. We

hus obtained 41 papers that describe different SIAs, presented in
able 1.

1 https://www.synonym-finder.com/.
3

3. RQ1: What are the inputs used by SIAs?

Using suitable inputs for service identification is crucial to
the quality of the identified services and thus the migration pro-
cess (Zadeh et al., 2012). When it comes to legacy systems, not all
software-related artifacts (e.g., use cases, business process mod-
els, activity diagrams, etc.) are always available. Consequently,
as depicted in Table 1, many SIAs in the literature relied on
different types of inputs. When considering bottom-up and hy-
brid approaches, they all use source code or related models, as
well as other types of input. We classify the inputs into three
main categories: (1) executable models of the systems, (2) non-
executable models of the systems, and (3) domain artifacts. We
discuss them in turn, below.

3.1. Executable models

Executable models of the systems include source code and
database schemas and test cases.

3.1.1. Source code

‘‘If the map and the terrain disagree, trust the terrain’’.

—Swiss Army Aphorism

With legacy systems, documentation (the map) is often miss-
ing or out of date. The source code (the terrain) becomes the
only reliable source of information about the system. Source code
is the most commonly used software artifact by the existing
SIAs, due to its availability. SIAs that use source code as input
identify business capabilities of the existing legacy systems and
expose them as reusable services. Such SIAs rely on reverse and
re-engineering processing to (1) extract dependencies between
program elements such as variables, functions, modules/classes,
etc.; (2) recover other kinds of information such as data flow
diagrams, use cases, business process models, state machine di-
agrams, etc.; (3) map the source code to other artifacts such
as business process models, use cases and database schemas,
to complete the system map; and, usually, (4) apply clustering
techniques to extract reusable services.

For legacy object-oriented systems, some SIAs rely on the
relationships among classes to analyze the system structure and
identify highly cohesive and loosely coupled reusable parts that
could be exposed as services. For example, Adjoyan et al. (2014)
relied on the analysis of dependencies between the classes of
legacy object-oriented software systems. They proposed a fitness
function that takes into account the type of relationship between
the classes and assigns a score for each relationship. They then
applied an agglomerative clustering technique to group classes
into candidate services. Aversano et al. (2008) mined candidate
services from the analysis of legacy source-code. They applied
reverse-engineering techniques to extract UML diagrams of sys-
tems and analyze the signatures of related methods to identify
candidate services.

Other SIAs identify services by analyzing the source code of
non-object-oriented software systems. For example Rodriguez
et al. (2013) reported the analysis of a large legacy system in an
Argentinian government agency written in COBOL and running on

https://www.synonym-finder.com/

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
I

able 1
nputs of service identification approaches (SC for Source Code, DB for Database, LogT for Log Traces, UAI for User Application Interaction, BPM for Business Process
Model, UC for Use Case, AD for Activity diagram, DFD for Data Flow Diagram, SMD for State Machine Diagram, Ont for Ontology, Hu.Exp for Human Expertise, Doc for
documentation)
Method Ex. Rep. of the Soft. Non Ex. Rep. of the Soft. Domain artifacts

Runtime artifacts Model artifacts

SC DB TEST LogT UAI BPM UC AD DFD SMD Ont Hu.Exp Doc

Service identification based on
quality metrics (Adjoyan et al.,
2014)

x

A spanning tree based approach
to identifying web services (Jain
et al., 2004)

x x x

Generating a REST Service Layer
from a Legacy System
(Rodríguez-Echeverría et al., 2014)

x

A service identification framework
for legacy system migration into
SOA (Alahmari et al., 2010)

x x x

Reusing existing object-oriented
code as web services in a SOA
(Sneed et al., 2013)

x x

Mining candidate web services
from legacy code (Aversano et al.,
2008)

x x

From objects to services: toward a
stepwise migration approach for
Java applications (Marchetto and
Ricca, 2009)

x x x x

Migrating interactive legacy
systems to web services (Canfora
et al., 2006)

x x x

MDCSIM: A method and a tool to
identify services (Huergo et al.,
2014a)

x x x x

Reverse engineering relational
databases to identify and specify
basic Web services with respect
to service oriented computing
(Baghdadi, 2006)

x

Identifying services in procedural
programs for migrating legacy
system to service oriented
architecture (Nakamur et al.,
2012)

x x x

A service-oriented analysis and
design approach based on data
flow diagram (Zhao et al., 2009)

x x

Service discovery using a semantic
algorithm in a SOA modernization
process from legacy web
applications (Sosa-Sánchez et al.,
2014)

x x x x

Incubating services in legacy
systems for architectural
migration (Zhang and Yang, 2004)

x x x x

Migrating to web services: A
research framework (Sneed, 2007)

x x

Service identification and
packaging in service oriented
re-engineering (Zhang et al., 2005)

x x

A wrapping approach and tool for
migrating legacy components to
web services (Chenghao et al.,
2010)

x

Extracting reusable object-oriented
legacy code segments with
combined formal concept analysis
and slicing techniques for service
integration (Zhang et al., 2006)

x x

(continued on next page)
4

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
able 1 (continued).
Method Ex. Rep. of the Soft. Non Ex. Rep. of the Soft. Domain artifacts

Runtime artifacts Model artifacts

SC DB TEST LogT UAI BPM UC AD DFD SMD Ont Hu.Exp Doc

Using dynamic analysis and
clustering for implementing
services by reusing legacy code
(Fuhr et al., 2011)

x x x x

Service mining from legacy
database applications (Saha, 2015)

x

An approach for mining services
in database oriented applications
(Del Grosso et al., 2007)

x x

Using user interface design to
enhance service identification
(Mani et al., 2008)

x x

A method to identify services
using master data and
artifact-centric modeling approach
(Huergo et al., 2014b)

x x x x

Multifaceted service identification:
Process, requirement and data
(Amiri et al., 2016)

x x x

The service modeling process
based on use case refactoring
(Kim and Doh, 2007)

x x x

Extracting reusable services from
legacy object-oriented systems
(Bao et al., 2010)

x x x x x x

Locating services in legacy
software:information retrieval
techniques, ontology and FCA
based approach (Djeloul, 2012)

x x x

Microservices identification
through interface analysis (Baresi
et al., 2017)

x x

Functionality-Oriented
microservice extraction based on
execution trace clustering (Jin
et al., 2018)

x x x x x

Bottom-up and top-down cobol
system migration to web services
(Rodriguez et al., 2013)

x x x

Extraction of microservices from
monolithic software architectures
(Mazlami et al., 2017)

x

Service Cutter: A systematic
approach to service decomposition
(Gysel et al., 2016)

x x

An approach to align business and
IT perspectives during the SOA
services identification (Souza
et al., 2017)

x x x

Discovering microservices in
enterprise systems using a
business object containment
heuristic (De Alwis et al., 2018a)

x x x x

A heuristic approach to locate
candidate web service in legacy
software (Abdelkader et al., 2013)

x

(continued on next page)
IBM mainframes. They analyzed the legacy source code to identify
the transactions to be migrated to services. These transactions are
then translated into Java code, which is easier to expose as Web
services.

Although the identification of candidate services using source
code analysis leads to reusable and fine grained services, a com-
bination of this kind of input with other artifacts (e.g., business
5

processes, databases, etc.) can be used to identify services with
more business values.

3.1.2. Databases
Architecturally, the database layer is important to manage the

persistence of data. Database contents, schemas and transactions
are the artifacts used by database-related SIAs (Baghdadi, 2006;
Saha, 2015; Del Grosso et al., 2007). These approaches identify

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T

e
t
c
U
d
r
d
s
d
i
T
a

s
g
a
g
b

3

c
t
v

i
2
u
T
a
r
c
s
e
f
s
d

able 1 (continued).
Method Ex. Rep. of the Soft. Non Ex. Rep. of the Soft. Domain artifacts

Runtime artifacts Model artifacts

SC DB TEST LogT UAI BPM UC AD DFD SMD Ont Hu.Exp Doc

Identifying microservices using
functional decomposition
(Tyszberowicz et al., 2018)

x x

Toward the understanding and
evolution of monolithic
applications as microservices
(Escobar et al., 2016)

x

From monolithic systems to
microservices: A decomposition
framework based on process
mining (Taibi and Systä, 2019)

x x x

Function-splitting heuristics for
discovery of microservices in
enterprise systems (De Alwis
et al., 2018b)

x x x x

From a monolith to a
microservices architecture: An
approach based on transactional
contexts (Nunes et al., 2019)

x

Re-architecting OO software into
microservices a quality-centered
approach (Selmadji et al., 2018)

x

data/entity services that provide access to, and management of,
the persistent data of the systems(C.f. Section 5).

For example, Baghdadi (2006) identified entity services by
xtracting SQL statements from systems. They then re-factored
hese statements and added them to the specification of a list of
andidate services using CRUD operations patterns (Create, Read,
pdate and Delete). Saha (2015) relied on identifying instances of
atabase-access patterns (database related operations) to identify
eusable services. Using specific quality metrics, they refined
atabase-related operations and wrapped them into data/entity
ervices. Interactions between the application to migrate and the
atabase have been also used by Del Grosso et al. (2007) to
dentify pieces of functionalities that can be exported as services.
hey performed the identification using clustering techniques
nd formal concept analysis.
Although the identification of candidate services based on the

tudy of database queries or schema leads to reusable and fine
rained services—which can only be entity services (cf. Section 5),
forward-engineering process is needed to build more coarse-
rained services, that combine these finer-grain services, into
usiness services.

.1.3. Test cases
A test case can be defined as a specification of the inputs, exe-

ution conditions, testing procedure, and expected output results
hat must be executed to achieve a testing objective, such as to
erify compliance with a specific requirement.
We found only three SIAs that use test cases, among other

nputs, to identify reusable services (Bao et al., 2010; Jin et al.,
018; Marchetto and Ricca, 2009). For example, Bao et al. (2010)
se test cases as an intermediate input for service identification.
hey first analyzed the legacy system source code and manu-
lly identified candidate use cases that correspond to potential
eusable services. Then, they derived test cases from these use
ases and used them to drive the execution of legacy-software
ystems. They used dynamic analysis techniques to analyze the
xecution log traces and generate coarse-grained code segments
or each candidate use case that corresponds to an identified
ervice. Also, Jin et al. (2018) only used test cases to execute
ifferent paths of the system and generate the corresponding
6

log traces. They analyzed these log files to get all classes and
method invocations of the system. They then applied a clustering
algorithm to group high cohesive and loosely coupled group of
classes that will be mapped into services.

As shown by Table 1, test cases are rarely used by SIAs. They
are only used as an intermediate artifact to guide the service
identification process, probably because test cases are seldom
available, and when they are, they cover only a small portion of
the system.

3.2. Non-executable models

We distinguish between two categories of non-executable
models: runtime artifacts extracted during the execution of the
systems, and non-executable models that describe the architec-
ture of the systems. We discuss them below.

3.2.1. Runtime artifacts
Runtime artifacts are extracted during the executions of the

systems. They contain log traces and user-application interactions
(e.g., user interfaces).

Log traces. Execution traces of legacy software systems depict
the dynamic behavior of the systems. Six SIAs rely on log traces
to extract sequence calls related to specific execution scenar-
ios (Fuhr et al., 2011; Bao et al., 2010; Jin et al., 2018; De Alwis
et al., 2018a; Taibi and Systä, 2019; De Alwis et al., 2018b). These
approaches identify pieces of legacy code executed during a set
of business processes (Fuhr et al., 2011) or use cases (Bao et al.,
2010), which are usually identified manually by business analysts.
Then, they suggest those pieces of code as potential implementa-
tions of services. For example, Fuhr et al. (2011) applied mapping
techniques of legacy code to business processes. They used log
trace analyses and clustering techniques. They cluster the classes
identified in the log traces according to their usage during the
business processes.

We note that SIAs do not rely solely on log traces to identify
services; they usually combine them with other types of inputs
such as business process models, use cases, or human expertise.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

U
b
u
s
k
i
2

i
2
J
b
(
n
a
c

i
h
c
a
a

3

a
B
i
a
w
e
L
c
p
t

o
m
a
e
p
a
t
l
p
g
c
t
c
i
c
T
w
a

s
a
p
(
l
a

ser interactions. User-interface inputs capture the relationship
etween users and the system’s functionalities. User interfaces
sually embody data requirements and workflows (Hix and Hart-
on, 1993). If the workflow model of a system is not available,
nowledge extracted from its user interfaces is useful to recover
ts underlying business logic (Mani et al., 2008; Zhang and Yang,
004).
We found five SIAs that analyze users’ interactions with user

nterfaces to identify services (Baresi et al., 2017; Mani et al.,
008; Canfora et al., 2006; Zhang and Yang, 2004; Djeloul, 2012;
in et al., 2018). For example, Mani et al. (2008) proposed an XML-
ased representation, Unified User Interface Design Specification
UUIDS), to describe user interfaces, including data bindings and
avigation events. They use this representation to automate the
nalysis of user interfaces and retrieve useful information for
andidate services requirements.
The analyses of user interactions help to retrieve navigational

nformation through the operations performed by users. They also
elp to identify reusable tasks with high business values, which
ould become services. However, SIAs based on user interactions
re hardly automated. Further, they require a model of the tasks,
s input, which may not be readily available.

.2.2. Model artifacts
Model artifacts abstract the structure and execution behavior of

systems. They include business process models, use cases, activity
diagrams, and state machine diagrams, which are discussed in
turn below.

Business Process Model (BPMs). They describe sets of activities
nd tasks that accomplish an organizational goal (Weske, 2012).
PMs have been used extensively by SIAs because of their abil-
ty to describe the business logic of legacy software systems at
high-level of abstraction. Business processes can be modeled
ith the Business Process Model and Notation (BPMN) and ex-
cuted through their corresponding Business Process Execution
anguage (BPEL). The decomposition of business processes is a
ommon strategy to identify services (Amiri et al., 2016). Business
rocess-driven SIAs usually decompose business processes into
asks. These tasks are then clustered and exposed as services.

For example, Alahmari et al. (2010) identified services based
n analyzing business process models. These business process
odels are derived from questionnaires, interviews and avail-
ble documentations that provide atomic business processes and
ntities on the one hand, and activity diagrams that provide
rimitive functionalities on the other hand. The activity diagrams
re manually identified from UML class diagrams extracted from
he legacy code using IBM Rational Rose. Different service granu-
arity levels are distinguished, as they pertain to atomic business
rocesses and entities. Related atomic processes and entities are
rouped together within the same service candidates to maximize
ohesion of candidate services and minimize coupling between
hem. Fuhr et al. (2011) relied on business process models to
orrelate classes of legacy object oriented systems. Each activity
n the business process model is executed. The classes that are
alled during the execution of a task are considered to be related.
he identification of services is based on a clustering technique
here the similarity measurement is based on how many classes
re used together in the activity executions.
In the context of service identification, BPMs help to under-

tand and capture the broad functional domains of legacy systems
nd how they interact with each other. Furthermore, business
rocess-driven approaches identify high-level candidate services
based on process and tasks activities). However, the major prob-
em with relying on BPMs to identify services is that such models

re not always available especially for legacy software systems.

7

Use cases. They help to identify, at a high-level of abstraction,
the interactions between users and systems to achieve goals. Use
cases depicts functional requirements as well as sequences of
actions that can be used for service identification (Vemulapalli
and Subramanian, 2009). We found seven SIAs that use such
artifact (Jain et al., 2004; Canfora et al., 2006; Kim and Doh, 2007;
Bao et al., 2010; Gysel et al., 2016; Tyszberowicz et al., 2018;
De Alwis et al., 2018b).

For example, Bao et al. (2010) analyze of the relationships
between use-case elements to identify reusable services. They
consider independent use cases of object-oriented systems are
candidate services. If a use case A extends a use case B, they
consider B as a candidate service, whereas A is not. Further, if use
case A specializes (inherits from) use case B, then A is considered
as a candidate service, whereas B is not.

The main reasons for SIAs to rely on use cases is that they offer
systematic and intuitive means of capturing functional require-
ments with a focus on value to the users. However, to the best of
our knowledge, SIAs based on use cases are difficult to automate
to the extent that they often rely on human expertise.

Activity diagram. They show interactions in systems as well as
the different steps involved in executing tasks (Schmuller, 2004).
Only two SIAs use activity diagrams to identify services (Jain et al.,
2004; Alahmari et al., 2010). For example, Alahmari et al. (2010)
extracted, from activity diagrams, useful information and trans-
form them to BPMN using mapping rules. They then analyzed
the business process models to extract reusable services. They
used activity diagrams of legacy systems as input but concretely
relied on analyzing the BPMNs to identify reusable services in the
system.

None of the identified SIAs relied only on activity diagrams.
Other types of inputs are usually used such as source code,
BPMs, and use cases to complement the identification process of
candidate services.

Data flow diagram. A Data Flow Diagram (DFD) is a graphical
representation of functional dependencies, based on the analysis
of data flows, between business functions or processes (Ambler,
2004). The main entities of a DFD are the (1) data stores storing
data for later use, (2) external entities representing sources/
destinations of the data, (3) processes manipulating the data,
and (3) data flows. Only two SIAs use DFDs to identify reusable
services (Nakamur et al., 2012; Zhao et al., 2009).

For example, Zhao et al. (2009) rely on DFDs to identify ser-
vices. They start by elaborating DFDs based on the system source
code analysis. They recommend to design new DFDs for coarse-
grained processes and to delete from the diagrams the fine-
grained ones. They map each process of the elaborated DFDs to
a service. They finally recommend to design a composite service
that will capture the operations provided by identified services
and allow these operations to be invoked in a defined workflow
structure.

DFDs can describe the business logics of a software sys-
tem. However, they are not always available nor straightforward
to generate from legacy systems. SIAs based on DFDs of ill-
structured systems do not guarantee as well the identification
of relevant services (Nakamur et al., 2012; Zhao et al., 2009).
Further, DFDs cannot represent dynamic dependencies because
they are only based on the source code of software systems.

State machine diagram. A State Machine Diagram (SMD) shows a
dynamic view of a system and describes the different states that
entities can have during their lifetimes (Aggarwal and Sabharwal,
2012). We found that only two SIAs use state machine diagrams
as inputs (Canfora et al., 2006; Huergo et al., 2014a). Canfora et al.

(2006) used these diagrams to model the interactions between

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

u
l
t

b
f
e
n

3

d
h

3

d
d
a
m
d
S
t
d
Z
a
J
b
t
t
s
t
c

t
a
o

3

u
a
t
c
I
s
t
c
2

t
s

3

m
k
t
D

n
i
i
i
l

(
t

I

sers and systems. Huergo et al. (2014a) used them to model the
ife-cycle of master data, defined as any information considered
o play a key role in the operation of a business.

Although state machine diagrams are ideal for describing the
ehavior of a limited number of objects, they are not suitable
or SIAs that are dealing with large systems due to the state-
xplosion problem. Further, they are seldom available, and are
ot easy to obtain from source code or documentation.

.3. Domain artifacts

Domain artifacts provide knowledge about the application
omain of the systems. They include software documentation,
uman expertise, and ontologies.

.3.1. Documentation
Software documentation describes and documents systems at

ifferent levels of abstraction (Lethbridge et al., 2003). Software
ocumentation includes textual descriptions as well as diagrams
nd models, such as the ones discussed above. Software docu-
entation can guide SIAs by reducing the search space for can-
idate services by describing key functionalities of the systems.
ome SIAs rely on software documentation to better understand
he system at hand, which helps to identify reusable services (Ro-
riguez et al., 2013; Aversano et al., 2008; Nakamur et al., 2012;
hang and Yang, 2004; Sneed, 2007; Bao et al., 2010). For ex-
mple, Aversano et al. (2008) proposed a SIA that analyzes the
avadoc documentation of systems to calculate lexical similarity
etween the classes or methods of the systems; they then used
hat similarity to identify clusters of functionality that can map
o services. Rodriguez et al. (2013) described an industrial case
tudy in which the documentation of a COBOL system was used
o understand the system and to identify business rules in the
ode.
As with many other inputs (e.g., business process models, log

races, use cases, etc.), software documentation is not always
vailable, and often outdated or out of sync with the source code
f legacy systems.

.3.2. Human expertise
Human expertise appears in different ways in SIAs. It has been

sed to fine tune the parameters of various service identification
lgorithms (see e.g. Jain et al. (2004)). It has also been used
o define the business logic and translate it into business pro-
esses (Alahmari et al., 2010; Amiri et al., 2016; Sosa et al., 2013).
t is also needed to analyze use cases and identify candidate
ervices (Bao et al., 2010). Finally, human expertise is needed
o define data flow diagrams of the system to then identify
andidate services (Nakamur et al., 2012; Zhao et al., 2009; Sneed,
007).
Human expertise in SIAs limits the automation of service iden-

ification approaches and it appears in most of SIAs at different
teps of the identification process.

.3.3. Ontologies
An ontology is a structured set of terms representing the se-

antics of a domain, whether through metadata or elements of a
nowledge domain (Bechhofer, 2009). Several SIAs use ontologies
o identify services (Del Grosso et al., 2007; Amiri et al., 2016;
jeloul, 2012; Chen et al., 2009).
For example, Djeloul (2012) proposed a WordNet-based tech-

ique to identify services. They built queries by analyzing users
nterfaces. They then used WordNet to expand the queries and
dentify pieces of code participating in services. They also used
nformation-retrieval techniques, such as vector-space model and

atent-semantic analysis, to map queries to the relevant code. n

8

Chen et al. (2009) started by analyzing the source code of
systems and used three types of ontologies: a domain concept
ontology, a functionality ontology, and a software-component on-
tology. They used formal and relational concept analysis to map
source code of legacy systems to the ontologies they specified to
identify candidate services.

The major challenge of ontology-based SIAs lies in defining the
proper ontologies for the system. Also, the high cost of developing
ontologies in terms of time, effort and resources remain a well-
known bottleneck in the ontology development process (Zhao
et al., 2008). Finally, ontology-based SIAs are complex and require
a lot of human expertise.

4. RQ2: What are the processes followed by SIAs?

A service-identification process applies one or more identifica-
tion techniques (e.g, wrapping, clustering, formal concept analysis,
etc.) that target a set of quality metrics (e.g, coupling, cohesion,
granularity, etc.) based on a predefined identification direction
i.e, bottom-up, top-down or hybrid). Human expertise defines
he automation degree of the process, based on specific analysis
types (e.g, static, dynamic, lexical, etc.).

4.1. Techniques of SIAs

We classified techniques of SIAs into six types (see Table 2):

• Wrapping: A black-box identification technique that en-
capsulates the legacy system with a service layer without
changing its implementation. The wrapper provides access
to the legacy system through a service encapsulation layer
that exposes only the functionalities desired by the software
architect (Canfora et al., 2006; Sneed, 2006).

• Genetic Algorithm: A meta-heuristic for solving optimiza-
tion problems that is based on ‘‘natural selection". It relies
on the calculation of a fitness function to reach an optimal
(or near-optimal) solution. By definition, an optimal solution
is a feasible solution where the fitness function reaches its
maximum (or minimum) value (Balabanović and Shoham,
1997).

• Formal concept analysis (FCA): A method for data analysis
where we derive implicit relationships between objects in
a formal way. It is also considered as a principled way of
grouping objects that have common properties (Birkhoff,
1940). To use FCA, we should first specify the context de-
noted by a triple C=(E, P, R) where E is a set of finite
elements, P is a set of finite properties and R is a binary
relation based on E and P. Also a formal concept is defined as
a grouping of all the elements that share a common set of
properties. A partial order could be defined on the formal
concepts with concept lattices (Gratzer, 2009), which also
offer a structured visualization of the concepts hierarchy.

• Clustering: It consists of classifying and partitioning data
into clusters (also called groups, categories or partitions)
that share common properties. These clusters are built based
on the internal homogeneity of their elements and the ex-
ternal separation between them. In fact, elements in the
same cluster should be similar to each other while elements
in different clusters should not (Xu and Wunsch, 2005).

• Custom heuristics: Some authors proposed their own
heuristic algorithms, instead of using predefined algorithms,
to decompose legacy software into SOA.

• General guidelines: they refer to approaches that only pro-
pose best practices, lessons learned, or recommendations for
service identification.

n the following, we describe and discuss the use of these tech-

iques to identify services from legacy systems.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

4

a
e
t
t
2
C
(
a
a
t
u
t
o
t
g
s
s
s
W
a
I
v
a

4

t
2
J
l
t
t
i
a
m
t
e
m
i
a
c
m

o
t
i
t
o
o

4

t
v
2
i
w
e
t
m
a
t
c
t

.1.1. Wrapping
Wrapping-based SIAs use this technique for encapsulating
legacy system (or subset thereof) with a service layer and

xporting its functionalities without changing its implementa-
ion (Canfora et al., 2006). Seven SIAs use/propose wrapping
echniques (Rodriguez et al., 2013; Rodríguez-Echeverría et al.,
014; Sneed et al., 2013; Canfora et al., 2006; Sneed, 2007;
henghao et al., 2010; Saha, 2015). For example, Canfora et al.
2006) proposed a wrapping methodology to expose the inter-
ctive functionalities of systems as services. The wrapper acts as
n interpreter of a Finite State Automaton (FSA) that describes
he interaction model between the system interfaces and their
sers. Also, Sneed et al. (2013) proposed an automatic wrapping
echnique based on the analysis of the public method interfaces
f object-oriented code. They transform the public method in-
erfaces into a relational table. Then based on this table, they
enerate WSDL interfaces that describe the functionalities of web
ervices. Finally, they generate from the definitions of WSDL
ervice interfaces the corresponding BPEL scripts to manage the
ervice, as well as the corresponding test script to test the service.
rapping techniques do not require to understand fully the

rchitectures/implementations of the legacy software systems.
t avoids the decomposition of the systems into reusable ser-
ices.However, the underlying systems still must be maintained
nd so still need legacy expertise.

.1.2. Genetic algorithms
We found only three SIAs that rely on Genetic Algorithms

o identify services from legacy software systems (Jain et al.,
004; Abdelkader et al., 2013; Amiri et al., 2016). For example,
ain et al. (2004) used Genetic Algorithms to identify services in
egacy source code. They proposed an identification technique
hat is based on spanning trees. They used these representations
o provide developers with a set of possible solutions for the
dentification problem. They also used a multi-objective genetic
lgorithm to refine the initial set of service decompositions. The
ulti-objective Genetic Algorithm relied on a fitness function

hat takes into consideration a set of managerial goals (i.e., cost
ffectiveness, ease of assembly, customization, reusability, and
aintainability) to get a near-optimal solution for the service

dentification problem. Abdelkader et al. (2013) proposed also
Genetic Algorithm-based SIA. However, they only take into

onsideration the functional cohesion of a set of legacy system
odules.
Although Genetic Algorithm-based SIAs may yield near-

ptimal solutions of reusable services, these SIAs do not guaran-
ee to obtain systematically the optimal services that (1) max-
mize (or minimize) the fitness function, and (2) are architec-
urally relevant for the identification problem. Also, the relevance
f the identified services highly depend on the choice of the
bjectives/managerial goals of the identification.

.1.3. Formal concept analysis
SIAs based on formal concept analysis basically rely on on-

ologies and/or concept lattices (Gratzer, 2009) to identify ser-
ices (Zhang et al., 2006; Del Grosso et al., 2007; Chen et al.,
009). These SIAs usually rely on concept lattices to order the
dentified formal concepts and/or to visualize these concepts as
ell as the specified ontologies—when used. For example, Zhang
t al. (2006) used formal concept analysis and program slicing
o identify services in object-oriented systems. They begin by
apping the program entities (classes, methods) into elements
nd properties, using documentation and human expertise. They
hen applied the Ganter algorithm (Ganter, 2010) to build the
oncept lattices. Finally, they visualized, interpreted and analyzed
hese concepts to get meaningful, useful, and reusable services.
9

Also, Del Grosso et al. (2007) identified database-related features
to be exported as services. They started by collecting database
queries, using the dynamic execution of the database oriented
systems. They then performed an analysis of the queries fields
(i.e., the SELECT and the FROM clauses) and constraints (i.e., the
WHERE clauses). They built a formal context using the concept
lattice technique (Wille, 1982). They used FCA to group related
queries into concepts and map them to candidate services.

The big challenge of using FCA for service identification con-
sists in well identifying the concepts related to the entities of
legacy systems. A proper setting of the formal context and their
entities is required to ensure proper identification of reusable
services. Also, the lack of automation in setting the formal context
of the system may hinder the use of FCA algorithms to identify
services in enterprise-scale systems.

4.1.4. Clustering
SIAs use clustering to group classes or functionalities in legacy

systems and consider each group as a candidate service. In gen-
eral, they combine clustering techniques and custom heuristics.
SIAs based on clustering belong to either one of two categories:
classes clustering (Adjoyan et al., 2014; Jain et al., 2004; Zhang
and Yang, 2004; Fuhr et al., 2011; Amiri et al., 2016; Baresi et al.,
2017; Jin et al., 2018; Mazlami et al., 2017; Gysel et al., 2016;
De Alwis et al., 2018a; Tyszberowicz et al., 2018; Escobar et al.,
2016; De Alwis et al., 2018b; Nunes et al., 2019; Selmadji et al.,
2018) or functionalities clustering techniques (Saha, 2015; Zhang
et al., 2005). The main clustering techniques used in the literature
are k-means (Jain, 2010; Fuhr et al., 2011) and hierarchical-
agglomerative clustering (Murtagh and Legendre, 2014; Zhang
and Yang, 2004).

For example, Zhang and Yang (2004) proposed an agglomer-
ative hierarchical clustering technique to extract reusable ser-
vices from object-oriented legacy code. They started by analyzing
legacy source code to calculate the similarity between the source
code entities. The similarity metric consider the relationship be-
tween classes (i.e, inheritance, association, etc.) as well as the
semantic similarity between them according to their names. They
finally express the results in a dendrogram, which presents a
hierarchic view of several possible decompositions of the system
into services. Also, Fuhr et al. (2011) used k-means clustering
techniques to identify services according to their type. The sim-
ilarity measurement is based on how many classes are used
together in a targeted activity execution.

K-means clustering techniques are indeed straightforward to
apply. However, their results in the context of service identi-
fication show below-average performance. On the other hand,
SIAs based on hierarchical clustering techniques do not require
to specify in advance the number of the needed clusters/services.
However, a subjective choice of the cutting point level in the
generated dendrogram is needed to get the final set of services.
This could be problematic for enterprise-scale systems where the
number of possibilities for cutting points could be important. The
choice between K-means and hierarchical clustering depends on
the application context where K-means could be a good option
when practitioners already know the number of services to be
identified. On the other hand, hierarchical clustering is good for
the case of unknowing the number of services to be identified. In
this case, the hierarchical clustering will partition the system into
a number of services based on the inter and intra cluster scaling.

4.1.5. Custom heuristics
Some SIAs use dedicated heuristics (Adjoyan et al., 2014; Jain

et al., 2004; Nakamur et al., 2012; Zhao et al., 2009; Zhang and
Yang, 2004; Fuhr et al., 2011; Mazlami et al., 2017; Gysel et al.,
2016) to identify services from legacy systems. Heuristics tech-
niques are usually used with clustering techniques and genetic

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

a
s

t
s
o
a
t
a
a
h
s

c
p

4

e
S

a
t
T
m
r
d
(
v
l
t
w
a
i

s
t

4

b
i
v

4

S

lgorithms. They also rely on quality metrics to identify candidate
ervices.
For example, Adjoyan et al. (2014) proposed a fitness func-

ion based on three characteristics of services: composability,
elf-containment, and functionality. They grouped classes from
bject-oriented legacy software systems using a hierarchical-
gglomerative clustering algorithm, which groups classes using
he value of the fitness function. Also, Jain et al. (2004) proposed
set of heuristics based on dynamic and static relationships

mong classes in object-oriented systems. Then, they used these
euristics with a multi-objective optimization algorithm to get
ets of classes representing services.
Although the use of heuristics is common in SIAs, their main

hallenge consists in establishing reliable heuristics to guide the
rocess of identifying reusable services.

.1.6. General guidelines
We found two works in the literature that propose only gen-

ral guidelines for service identification (Alahmari et al., 2010;
need, 2007).
For example, Alahmari et al. (2010) proposed to extract UML

ctivity diagrams from legacy systems and perform a model-
o-model transformation to obtain BPMN from the diagrams.
hey argued that having a well defined SOA migration meta-
odel is important to make the migration process effective. They

ecommended the use of ad-hoc metrics because they assist in
eriving optimal services with suitable granularity. Also Sneed
2007) proposed several guidelines for discovering potential ser-
ices, evaluating these services and extracting their code from
egacy systems. They recommended the use of a highly cus-
omizable rule based decision making mechanisms to identify
hich portions of legacy code could be potential services. They
lso recommended the use of DFDs to analyze data flow of the
dentified portions of code and decide about its business value.

SIAs based on guidelines propose general ideas to extract
ervices from legacy software systems. They are indeed difficult
o validate and automate .

.2. Quality of identified services

Achieving the desired level of quality is critical for service
ased architectures. As a result, some SIAs use/target some qual-
ty metrics/requirements to obtain high-quality candidate ser-
ices.

.2.1. Quality requirements
We describe the quality requirements targeted by the studies

IAs as follows:

• Reuse: The ability of a service to participate in multiple
service assemblies (compositions) (Feuerlicht et al., 2007).
Better reusability should provide better return of invest-
ment (ROI) and shorter development times (Alkkiomäki and
Smolander, 2016).

• Maintainability: Services should ease the effort to modify
their implementation, to identify root causes of failures, to
verify changes, etc. Perepletchikov et al. (2007).

• Interoperability: The ability of a service to communicate
and be invoked by other systems/services implemented in
different programming languages (Erl, 2005).

• Self-containment: A service should be completely self-
contained to be deployed as a single unit, without depend-
ing on other services (Adjoyan et al., 2014).

• Composability: Services should be composable with one
another to be reused and integrated as services that con-
trol other services or that provide functionalities to other
services (Sindhgatta et al., 2009).
10
As we can see in Table 3, a few SIAs consider quality require-
ments in their identification techniques. However, service reuse
is the most considered requirement by these approaches. On the
other hand, we notice that few studies consider the study of com-
posability, self-containment, maintainability, and interoperability
of the identified services. This could be because these quality
requirements are (1) difficult to characterize and measure and (2)
hardly provide useful insights to identify services.

4.2.2. Quality metrics
We describe the quality metrics targeted by the studied SIAs

as follows:

• Coupling: The dependencies among services should be min-
imized and the functionalities should be encapsulated to
limit the impact of changes in one service to other ser-
vices (Perepletchikov et al., 2007).

• Cohesion: Cohesion is a measure of the strength of the re-
lationships among programming entities (e.g., classes, func-
tions, etc.) implementing a service and the functionality
provided by the service (Abdelkader et al., 2013).

• Granularity: An adequate granularity is a primary concern
of SIAs. It can be adjusted to the scope of the functionality
offered by the service (Huergo et al., 2014a).

• Total number of services: SIAs must not have too many
‘‘small’’ services or not enough services (Gysel et al., 2016).

Table 4 shows that state-of-the-art SIAs highly rely on the
use of some specific quality metrics such as loose coupling, high
cohesion, and granularity. However, these SIAs fail at providing a
comprehensive quality model to assess and evaluate the quality
of the identified services.

4.3. Directions of SIAs

SIAs can follow three directions: top-down, bottom-up, and
hybrid.

• A top-down process starts with high-level artifacts, e.g., do-
main analysis or requirement characterization of systems
to define their functionalities. They do not consider low-
level artifacts to identify services. Hence, we do not consider
these SIAs in our study.

• A bottom-up process starts with low-level artifacts to maxi-
mize code reuse and minimize changes. It extracts more ab-
stract artifacts, e.g., architectures, which can be used to iden-
tify candidate services. It can also identify new services that
fill implementation gaps or meet new requirements (Bell,
2009).

• A hybrid process combines a top-down and a bottom-up
process. It uses both requirements and implementation ar-
tifacts to identify the candidate services.

As we focus in this SLR on SIAs that follow the bottom-up and
hybrid direction, we report in Table 5 the distribution of SIAs
over these two directions. Table 5 shows that there are almost
equal numbers of bottom-up and hybrid SIAs in the literature.
Finally we notice that bottom-up SIAs are more successful at
delivering services in the short-term but they usually identify
fine-grained services with limited reuse. Moreover, Hybrid SIAs
tend to complement and reduce the limitations of bottom-up
approaches by also considering requirements.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
T

c

able 2
argeted techniques of SIAs.
Technique SI Method Total

Wrapping Rodriguez et al. (2013), Rodríguez-Echeverría et al. (2014), Sneed et al. (2013), Canfora et al.
(2006), Sneed (2007), Chenghao et al. (2010) and Saha (2015)

7

Genetic algorithm Jain et al. (2004), Abdelkader et al. (2013) and Amiri et al. (2016) 3
Formal concept analyses Zhang et al. (2006), Del Grosso et al. (2007), Djeloul (2012) and Chen et al. (2009) 4
Clustering Adjoyan et al. (2014), Jain et al. (2004), Zhang et al. (2005), Zhang and Yang (2004), Fuhr et al.

(2011), Saha (2015), Amiri et al. (2016), Baresi et al. (2017), Jin et al. (2018), Mazlami et al.
(2017), Gysel et al. (2016), De Alwis et al. (2018a), Tyszberowicz et al. (2018), Escobar et al.
(2016), De Alwis et al. (2018b), Nunes et al. (2019) and Selmadji et al. (2018),

17

Custom heuristics Adjoyan et al. (2014), Jain et al. (2004), Rodríguez-Echeverría et al. (2014), Aversano et al.
(2008), Marchetto and Ricca (2009), Huergo et al. (2014a), Nakamur et al. (2012), Zhao et al.
(2009), Souza et al. (2017), Zhang and Yang (2004), Fuhr et al. (2011), Mani et al. (2008), Kim
and Doh (2007), Bao et al. (2010), Chen et al. (2009), Jin et al. (2018), Mazlami et al. (2017),
Gysel et al. (2016), Souza et al. (2017), De Alwis et al. (2018a), Taibi and Systä (2019), Escobar
et al. (2016), De Alwis et al. (2018b), Nunes et al. (2019) and Selmadji et al. (2018)

25

General guidelines Sneed (2007) and Alahmari et al. (2010) 2
Table 3
Targeted quality requirements by SIAs.
Quality requirement SI Method Total

Reuse Rodriguez et al. (2013), Marchetto and Ricca (2009), Zhang and Yang (2004), Sneed (2007), Amiri
et al. (2016) and Kim and Doh (2007)

6

Maintainability Zhang et al. (2005) 1
Interoperability Sneed (2007) 1
Self-containment Adjoyan et al. (2014) and Zhang and Yang (2004) 2
Composability Adjoyan et al. (2014) 1
Table 4
Targeted quality metrics by SIAs.
Quality metric SI method Total

Coupling Adjoyan et al. (2014), Jain et al. (2004), Alahmari et al. (2010), Huergo et al. (2014a), Nakamur
et al. (2012), Zhao et al. (2009), Zhang and Yang (2004), Zhang et al. (2005), Huergo et al.
(2014b), Baresi et al. (2017), Tyszberowicz et al. (2018), Escobar et al. (2016), Taibi and Systä
(2019), De Alwis et al. (2018b), Nunes et al. (2019) and Selmadji et al. (2018)

16

Cohesion Rodriguez et al. (2013), Adjoyan et al. (2014), Jain et al. (2004), Alahmari et al. (2010), Huergo
et al. (2014a), Nakamur et al. (2012), Zhao et al. (2009), Zhang et al. (2005), Huergo et al.
(2014b), Amiri et al. (2016), Baresi et al. (2017), Tyszberowicz et al. (2018), Escobar et al. (2016),
De Alwis et al. (2018b) and Selmadji et al. (2018)

15

Granularity Rodriguez et al. (2013), Marchetto and Ricca (2009), Huergo et al. (2014a), Nakamur et al.
(2012), Zhao et al. (2009), Zhang and Yang (2004), Zhang et al. (2005), Huergo et al. (2014b),
Kim and Doh (2007), Baresi et al. (2017), Tyszberowicz et al. (2018), Escobar et al. (2016) and
Nunes et al. (2019)

13

Number of services Adjoyan et al. (2014), Marchetto and Ricca (2009), Gysel et al. (2016) and Selmadji et al. (2018) 4
Table 5
Identification process directions of service identification methods in the literature.
Direction SI method Total

Bottom-up Rodriguez et al. (2013), Adjoyan et al. (2014), Jain et al. (2004), Rodríguez-Echeverría et al.
(2014), Baghdadi (2006), Nakamur et al. (2012), Zhao et al. (2009), Sneed (2007), Chenghao et al.
(2010), Zhang et al. (2006), Saha (2015), Del Grosso et al. (2007), Djeloul (2012), Baresi et al.
(2017), Jin et al. (2018), Mazlami et al. (2017), Gysel et al. (2016), De Alwis et al. (2018a),
Abdelkader et al. (2013), Escobar et al. (2016), Selmadji et al. (2018) and Chen et al. (2009)

22

Hybrid Alahmari et al. (2010), Sneed et al. (2013), Aversano et al. (2008), Marchetto and Ricca (2009),
Canfora et al. (2006), Huergo et al. (2014a), Sosa-Sánchez et al. (2014), Zhang and Yang (2004),
Zhang et al. (2005), Fuhr et al. (2011), Mani et al. (2008), Amiri et al. (2016), Kim and Doh
(2007), Bao et al. (2010), Souza et al. (2017), Tyszberowicz et al. (2018), Taibi and Systä (2019),
De Alwis et al. (2018b) and Nunes et al. (2019)

19
4.3.1. Analyses types
SIAs may perform static, dynamic, lexical analyses, or some

ombination thereof to identify services.

• Static analysis is performed without executing a software
system. Dependencies between classes are potential rela-
tionships, like method calls and access attributes. These
dependencies are analyzed to identify strongly connected
classes, for example, to identify services. Adjoyan et al.
(2014), Rodríguez-Echeverría et al. (2014), Sneed et al.
(2013), Aversano et al. (2008), Baghdadi (2006), Zhang and
Yang (2004), Sneed (2007), Zhang et al. (2005) and Cheng-
11
hao et al. (2010) are examples of identification methods
based only on static analysis. The main advantage of static
analysis is that it depends only on the source code. It does
not address polymorphism and dynamic binding.

• Dynamic analysis is performed by examining the software
system at run time. Dependencies between software ele-
ments (e.g., class instantiations and accesses (Bao et al.,
2010), function calls (Zhang et al., 2005; De Alwis et al.,
2018b), relationships between database tables (De Alwis
et al., 2018a), etc.) are collected during the program exe-
cution (Shatnawi et al., 2018). The execution is performed

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

o
f
l

4

p
a

o

5

o
b
a

5

t

i
c
b
e
a
S
a
J
p
i
s
i
T
o

t
a
a
c

based on a set of cases that covers the system functionalities,
called execution scenarios.

• Lexical analysis techniques suppose that the similarity be-
tween the classes should be taken into account during ser-
vice identification process. This analysis plays the main role
in approaches that used features location and textual simi-
larity techniques.

Table 6 shows that 76% of SIAs rely on static analysis, 39%
n dynamic analysis, and 21% on lexical analysis. Finally we
ound that 38% rely on a combination of analyses to reduce the
imitations of each individual analysis.

.4. Automation of SIAs

Automation is the degree to which a SIA needs human ex-
erts. We distinguish three levels of automation: manual, semi-
utomatic, and fully automatic.

• Manual SIAs depend entirely on human experts. They only
provide general guidelines to experts to identify services
without automating any step of the service identification
process (Rodríguez-Echeverría et al., 2014; Marchetto and
Ricca, 2009).

• Semi-automatic SIAs need human experts to perform some
of their tasks. For example, Jain et al. (2004) proposed a SIA
that require a human expert to provide objective functions
and specify weights for each of them.

• Automatic SIA do not need any human intervention during
the identification process. We did not find any approach
in the literature that fully automates the identification of
services in existing systems.

Table 7 shows that there is a lack of automation of SIAs: 88%
f the SIAs are semi-automatic or manual.

. RQ3: What are the outputs of SIAs?

In the following, we discuss the output of SIAs in terms
f the target service architecture (service-based/microservice-
ased) and discuss the types of services considered by these
pproaches.

.1. Service architecture

Service identification approaches aim at identifying services
hat will be integrated in a SOA.

In the past few years, several SIAs have been interested in
dentifying microservices – a variant of the service-oriented ar-
hitecture style – to migrate legacy systems to microservice-
ased systems (Baresi et al., 2017; Mazlami et al., 2017; Gysel
t al., 2016; Tyszberowicz et al., 2018; Escobar et al., 2016; Taibi
nd Systä, 2019; De Alwis et al., 2018b; Nunes et al., 2019;
elmadji et al., 2018). For example, Escobar et al. (2016) proposed
microservice identification approach to migrate a monolithic

ava Enterprise Edition (JEE) application to microservices. They
erformed a static analysis to cluster session and entity beans
nto microservices. They started by associating a cluster to each
ession bean. They grouped these clusters according to a cluster-
ng threshold that focuses on structural coupling and cohesion.
he distance between clusters is calculated based on the number
f shared entity beans.
Mazlami et al. (2017) proposed a microservices identifica-

ion approach that relies on the analysis of data collected from
version control repository of a monolithic application. They

lso applied clustering and custom heuristics to extract loosely-
oupled and high-cohesive set of classes that will be mapped to
12
microservices. Both semantic and logical coupling metrics were
considered by their clustering algorithm. In particular, they com-
bined three metrics to identify microservices: semantic coupling
(to identify groups of classes that belong to the same domain),
single responsibility principle (to analyze classes that change to-
gether in commits), and contributor coupling (to identify classes
accessed by the same development team). All these metrics were
combined and used by a clustering algorithm to identify groups
of classes that belong to the same domain and could represent a
microservice.

We notice that microservices identification approaches rely
on clustering and custom heuristics to decompose the system
into small services. Although the granularity is an important
characteristic for qualifying microservices, none of the studied
approaches provided a comprehensive model to evaluate whether
microservices are identified with the right level of granularity.
Also, the granularity difference between services and microser-
vices is still neither well defined nor clearly discussed by the
studied microservices identification approaches.

5.2. Service types

We identified only four SIAs that identify specific types of
services in existing systems (Alahmari et al., 2010; Marchetto
and Ricca, 2009; Huergo et al., 2014a; Fuhr et al., 2011) and
nine papers proposing service taxonomies (Alahmari et al., 2010;
Marchetto and Ricca, 2009; Huergo et al., 2014a; Fuhr et al., 2011;
Erl, 2007; Cohen, 2007; Krafzig et al., 2005; Ani and Baghdadi,
2015; Gu and Lago, 2010), that classify services with hierarchical-
layered schemas to support the communication among stake-
holders during the implementation of SOAs. These existing tax-
onomies offer several service types with different classification
criteria (e.g., granularity Alahmari et al., 2010; Erl, 2007; Cohen,
2007, reuse Fuhr et al., 2011; Cohen, 2007; Ani and Baghdadi,
2015, etc.) and different names for the same service types. We
studied these previous works and identified the following six
service types that are generic and cover most of the existing
service types. We validated our taxonomy through an industrial
survey with practitioners (Abdellatif et al., 2018) that we detail
in Section 7.

1. Business-process services: (Also called business service
(Alahmari et al., 2010; Fuhr et al., 2011; Cohen, 2007; Ani
and Baghdadi, 2015)), they correspond to business pro-
cesses or use cases. These are services used by users. These
services compose or use the enterprise-task, application-
task, and entity services described in the following. Ex-
amples of business-process services include flight booking
services, hotel booking services and sales order services.

2. Enterprise-task services: (Also called capabilities Cohen,
2007), they are of finer granularity than business-process
services. They implement generic business functionalities
reused across different applications. Examples of
enterprise-task services include ‘‘online payment’’ and ‘‘tax
calculation’’.

3. Application-task services: (Also called task, activity or
composite service (Alahmari et al., 2010; Marchetto and
Ricca, 2009; Baghdadi, 2006; Ani and Baghdadi, 2015)),
they provide functionalities specific to one application.
They exist to support reuse within one application or to
enable business-process services (Cohen, 2007). Examples
of application-task services include quoting request and
invoicing that take part in the sales order business process
of a typical ERP system.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
A

i
(
m
F
s

o
m
a
e
p
a
t
u

able 6
nalyses types of SIAs.
Analysis type SI method Total

Static analysis Adjoyan et al. (2014), Jain et al. (2004), Rodríguez-Echeverría et al. (2014), Sneed et al. (2013),
Aversano et al. (2008), Huergo et al. (2014a), Baghdadi (2006), Sneed (2007), Chenghao et al.
(2010), Sosa-Sánchez et al. (2014), Zhang and Yang (2004), Zhang et al. (2005), Mani et al.
(2008), Amiri et al. (2016), Kim and Doh (2007), Souza et al. (2017), Zhang et al. (2006), Saha
(2015), Del Grosso et al. (2007), Djeloul (2012), Chen et al. (2009), Baresi et al. (2017), Rodriguez
et al. (2013), Mazlami et al. (2017), Gysel et al. (2016), De Alwis et al. (2018a), Abdelkader et al.
(2013), Tyszberowicz et al. (2018), Escobar et al. (2016), Nunes et al. (2019) and Selmadji et al.
(2018)

31

Dynamic analysis Jain et al. (2004), Alahmari et al. (2010), Marchetto and Ricca (2009), Canfora et al. (2006),
Huergo et al. (2014a), Nakamur et al. (2012), Zhao et al. (2009), Bao et al. (2010), Zhang et al.
(2005), Fuhr et al. (2011), Mani et al. (2008), Jin et al. (2018), Mazlami et al. (2017), De Alwis
et al. (2018a), Taibi and Systä (2019) and De Alwis et al. (2018b)

16

Lexical analysis Aversano et al. (2008), Sosa-Sánchez et al. (2014), Zhang and Yang (2004), Zhang et al. (2006),
Del Grosso et al. (2007), Djeloul (2012), Baresi et al. (2017) and Mazlami et al. (2017)

8

Table 7
Automation of SIAs.
Analysis type SI method Total

Automatic Baghdadi (2006), Saha (2015), Gysel et al. (2016), Souza et al. (2017) and Abdelkader et al. (2013) 5
Semi-automatic Rodriguez et al. (2013), Adjoyan et al. (2014), Jain et al. (2004), Alahmari et al. (2010), Sneed

et al. (2013), Aversano et al. (2008), Canfora et al. (2006), Huergo et al. (2014a), Nakamur et al.
(2012), Zhao et al. (2009), Sosa-Sánchez et al. (2014), Zhang and Yang (2004), Sneed (2007),
Zhang et al. (2005), Chenghao et al. (2010), Zhang et al. (2006), Fuhr et al. (2011), Del Grosso
et al. (2007), Mani et al. (2008), Amiri et al. (2016), Bao et al. (2010), Djeloul (2012), Baresi et al.
(2017), Jin et al. (2018), Mazlami et al. (2017), De Alwis et al. (2018a), Escobar et al. (2016),
Taibi and Systä (2019), De Alwis et al. (2018b), Nunes et al. (2019), Selmadji et al. (2018) and
Chen et al. (2009)

32

Manual Rodríguez-Echeverría et al. (2014), Marchetto and Ricca (2009), Kim and Doh (2007) and
Tyszberowicz et al. (2018)

4

4. Entity services: (Also called information or data services
(Alahmari et al., 2010; Erl, 2007; Ani and Baghdadi, 2015)),
they provide access to and management of the persistent
data of legacy software systems. They support actions on
data (CRUD) and may have side-effects (i.e., they modify
shared data). Examples of entity services include manage-
ment services for clients, bank accounts, and products.

5. Utility services: They do not support directly the business-
process services but provide some cross-cutting function-
alities required by domain-specific services (Ani and Bagh-
dadi, 2015; Fuhr et al., 2011; Huergo et al., 2014a). Exam-
ples of typical utility services include notification, logging,
and authentication.

6. Infrastructure services: They allow users deploying and
running SOA systems. They include services for commu-
nication routing, protocol conversion, message processing
and transformation (Alahmari et al., 2010). They are some-
times provided by an Enterprise Service Bus (ESB). They are
reused in more services than utility services. Examples of
infrastructure services include publish–subscribe, message
queues, and ESB.

Most of SIAs identify general services of SOA without specify-
ng different service types, e.g., Adjoyan et al. (2014), Zhang et al.
2005) and Nakamura et al. (2009). Only a few approaches (Alah-
ari et al., 2010; Marchetto and Ricca, 2009; Huergo et al., 2014a;
uhr et al., 2011) considered the identification of specific types of
ervices in existing systems.
For example, Alahmari et al. (2010) identified services based

n analyzing business process models. These business process
odels are derived from questionnaires, interviews and avail-
ble documentations that provide atomic business processes and
ntities on the one hand, and activity diagrams that provide
rimitive functionalities on the other hand. The activity diagrams
re manually identified from UML class diagrams extracted from
he legacy code using IBM Rational Rose. Different service gran-
larity are distinguished in relation to atomic business processes
13
and entities. Dependent atomic processes as well as the related
entities are grouped together at the same service to maximize
the cohesion and minimize the coupling. There is no details about
how to identify the different service types. Fuhr et al. (2011) iden-
tified three types of services. These are business, entity and utility
services. The services are identified from legacy codes based on
a dynamic analysis technique. The authors relied on a business
process model to identify correlation among classes. Each activity
in the business process model is executed. Classes that have
got called during the execution are considered as related. The
identification of services is based on a clustering technique where
the similarity measurement is based on how many classes are
used together in the activity executions. The identified clusters
are manually interpreted and mapped into the different service
types. Classes used only for the implementation of one activity
are grouped into a business service corresponding to this activity.
Entity services are composed of clusters of classes that contribute
to implement multiple activities but not all of them. A Cluster
of classes that are used by all of the activities represent the
implementation of utility services. A strong assumption regarding
this approach is that business process model should be available
to identify execution scenarios.

We notice that there is a lack of SIAs that are type-centric: only
four SIAs focus on the identification of specific types of services
from legacy systems. These approaches focus on identifying busi-
ness (Alahmari et al., 2010; Huergo et al., 2014a; Fuhr et al., 2011),
entity (Marchetto and Ricca, 2009; Huergo et al., 2014a) and
utility services (Alahmari et al., 2010; Marchetto and Ricca, 2009;
Huergo et al., 2014a; Fuhr et al., 2011). Also, none of the studied
SIAs tried to identify enterprise-task or infrastructure services
through the analysis of legacy systems. These type-centric SIAs
do not distinguish in their service identification process between
enterprise and application-task services as the scope of reuse of
the identified services is not well studied or specified.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

6

u
q
b

6

w
s
a
i
m
o
m
a
a

6

r
m
l

t
i

6

m

s
‘

6

c
t

6

u
a

U

a
r

c
o
c
(
i
s

(
t
c
a
F
m
W
w

w
T
m
t
t

7

t
p

s
t
l
o
d
p

7

o
l
p
b

7

b
s
a

s
a
c
t

f
a
(
(
(

t
‘
‘
a
p
p

. RQ4: What is the usability of SIAs?

Fig. 2 shows that we consider four elements to estimate the
sability of SIAs: validation, accuracy, tool support, and result
uality. We then introduce a measure of the usability of the SIAs
ased on these four elements and their values for each SIA.

.1. Validation

Validation refers to the legacy software systems (if any) on
hich the SIA was applied. It can be industrial (e.g., real industrial
ystems), experimental (small, experimental systems), or none at
ll. We evaluate the usability of a SIA as follows. If the validation
s performed on (1) industrial systems, it is ‘‘high’’; (2) experi-
ental systems, it is ‘‘medium’’, else (3) it is ‘‘low’’. We found that
nly 34% of SIAs were validated on real industrial systems, with
ost SIAs validated on experimental systems or not validated
t all. This lack of industrial validation is a major threat to the
pplicability of SIAs.

.2. Accuracy/precision

We assign ‘‘high’’, ‘‘medium’’, and ‘‘low’’ values to the accu-
acy/precision of SIAs. We assign ‘‘high’’ if it is greater than 80%,
edium if it is between 50% and 79% in the SIA, and low if it is

ess than 50%.
Although the accuracy/precision of SIAs is important, we found

hat only few SIAs have reported accuracy/precision (as depicted
n Table 8).

.3. Tool support

Tool support refers to the tool(s) implementing a SIA and their
aturity, if any.
We consider the tool support of a SIA as ‘‘high’’ if it is open-

ource or industry ready, ‘‘medium’’ if it is only a prototype, and
‘low’’ if there is little or no tool support.

.4. Result quality

Result quality is an estimation of the quality of the identified
andidate services and whether or not the authors detailed well
heir proposed SIA. It can be ‘‘high’’, ‘‘medium’’, or ‘‘low’’.

.5. Usability

We consider these four preceding elements to estimate the
sability of SIAs. We assign to each SIA a usability degree (UD)
s follows:

D =

4∑
i=1

Scorei

Scorei ∈ {high = 1,medium = 0, low = −1}, ∀i ∈ {1, . . . , 4}
nd refers to validation, accuracy, tool support, and usability,
espectively.

IfUD ≥ 1, then UD = high.
IfUD = 0, then UD = medium.
IfUD ≤ −1, then UD = low.
We tried our best to consider the most important usability

riteria and give a rational estimation of the usability degree
f the studied SIAs. For example, as shown in Table 8, to cal-
ulate the usability of the SIA of Rodríguez-Echeverría et al.
2014), we studied the scores relative to tool support, validation,
dentification accuracy, and quality results of the approach. This

tudy has a high tool support through the tool named MIGRARIA

14
tool-support score is 1). It is validated on an experimental sys-
em (validation score is 0). There was no mention of the ac-
uracy/precision of the approach and thus we did not consider
ssociated scores for calculating the usability of the approach.
inally, based on our judgment of the whole approach, we esti-
ated that this SIA has high quality results (quality result is 1).
e added all these scores and obtain a usability score of two,
hich we qualified as a high usability degree.
Table 8 shows that 39% of SIAs have a high usability degree

hile 22% have medium usability, and 39% have low usability.
hese results show that the studied SIAs are still in their infancy,
ainly due to (1) the lack of validation on industrial systems, (2)

he lack of estimation of their accuracy/precision, (3) their lack of
ool support, and (4) their lack of automation.

. Taxonomy and validation

Fig. 2 shows the taxonomy resulting from our answers to
he research questions. This taxonomy directly derive from the
revious sections.
We believe that the validation of a taxonomy is difficult for

everal reasons. In fact, it is a tool for researchers and practi-
ioners and, as such, it should be used to assess its strengths and
imitations. Also, a taxonomy often cannot be compared against
ther ones, either because they do not exist or because they have
ifferent objectives. Consequently, to validate our taxonomy, we
erformed a survey with industrial experts.

.1. Methodology

We conducted a survey with 45 industrial experts to validate
ur taxonomy and also obtain their informed opinions about
egacy-to-SOA migration in general and service identification in
articular (Abdellatif et al., 2018). We conducted this survey
etween October 2017 and March 2018 in five main steps:

.1.1. Preparation of the survey
We created a Web-based survey2 using Google Forms. We

uilt our survey on our taxonomy: the individual questions corre-
pond to each composite node of the taxonomy and their possible
nswers correspond to the leave nodes.
Before releasing the survey, we performed a pilot study with

ix participants, three from academia and three from industry,
nd validated the relevance of the questions, their wording, the
overage of their answers, etc. The six participants went through
he questions and suggested few minor changes.

The final survey contained six sections: (1) participants’ pro-
essional and demographic data, (2) type of migrated systems
nd reasons for migration, (3) general information about SIAs
perception of importance, strategy, inputs, level of automation),
4) technical information about SIAs (techniques, quality metrics),
5) types of sought services, and (6) used tools and best practices.

For example, we asked the participants the following ques-
ions: ‘‘What information do/did you use to identify services?’’,
‘What kind of identification techniques do/did you apply?’’,
‘What are the types of the migrated services?’’, etc. We provide
list of possible answers for each question and ask the partici-
ants to mention any other answer if he/she did not select any
ossibility from the provided list.

2 https://goo.gl/forms/EE31KeA7R7pUeTYI2.

https://goo.gl/forms/EE31KeA7R7pUeTYI2

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
U

able 8
sability of SIAs.
Method Tool support Validation Accuracy/Precision Quality of results Usability

Service identification based on quality metrics
(Adjoyan et al., 2014)

Prototype Experimental Medium Medium Medium

A spanning tree based approach to identifying
web services (Jain et al., 2004)

MOGA-WSI Industry NA High High

Generating a REST Service Layer from a Legacy
System (Rodríguez-Echeverría et al., 2014)

MIGRARIA Experimental NA High High

A service identification framework for legacy
system migration into SOA (Alahmari et al.,
2010)

Prototype Experimental NA Low Low

Reusing existing object-oriented code as web
services in a SOA (Sneed et al., 2013)

Industry ready Industry NA High High

Mining candidate web services from legacy
code (Aversano et al., 2008)

NA Experimental NA Low Low

From objects to services: toward a stepwise
migration approach for Java applications
(Marchetto and Ricca, 2009)

NA Experimental NA Low Low

Migrating interactive legacy systems to web
services (Canfora et al., 2006)

NA Case Study NA Medium Low

MDCSIM: A method and a tool to identify
services (Huergo et al., 2014a)

MDCSIM Industry NA High High

Reverse engineering relational databases to
identify and specify basic Web services with
respect to service oriented computing
(Baghdadi, 2006)

CASE Experimental NA Medium High

Identifying services in procedural programs for
migrating legacy system to service oriented
architecture (Nakamur et al., 2012)

NA Experimental NA Low Low

A service-oriented analysis and design
approach based on data flow diagram (Zhao
et al., 2009)

SOAD Experimental NA Low Medium

Service discovery using a semantic algorithm
in a SOA modernization process from legacy
web applications (Sosa-Sánchez et al., 2014)

MigraSOA Experimental NA Low Medium

Incubating services in legacy systems for
architectural migration (Zhang and Yang, 2004)

Prototype Industry NA Low Medium

Migrating to web services: A research
framework (Sneed, 2007)

NA No Validation NA Low Low

Service Identification and Packaging in Service
Oriented Reengineering (Zhang et al., 2005)

Prototype Case Study NA Medium Medium

A wrapping approach and tool for migrating
legacy components to web services (Chenghao
et al., 2010)

Prototype Case Study NA Low Low

Extracting reusable object-oriented legacy code
segments with combined formal concept
analysis and slicing techniques for service
integration (Zhang et al., 2006)

Prototype Experimental NA Low Low

Using dynamic analysis and clustering for
implementing services by reusing legacy code
(Fuhr et al., 2011)

Prototype Case Study Medium Low Low

Service mining from legacy database
applications (Saha, 2015)

Prototype Industry NA High High

An approach for mining services in database
oriented applications (Del Grosso et al., 2007)

Prototype Industry High High High

Using user interface design to enhance service
identification (Mani et al., 2008)

Prototype Industry NA Medium High

A method to identify services using master
data and artifact-centric modeling approach
(Huergo et al., 2014b)

NA Experimental NA Low Low

Multifaceted service identification: Process,
requirement and data (Amiri et al., 2016)

Prototype Experimental High Low Medium

The service modeling process based on use
case refactoring (Kim and Doh, 2007)

Prototype Case Study NA Low Low

Extracting reusable services from legacy
object-oriented systems (Bao et al., 2010)

Prototype Industry NA Medium High

(continued on next page)
15

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T

7

m
l
m
m

able 8 (continued).
Method Tool support Validation Accuracy/Precision Quality of results Usability

Locating services in legacy
software:information retrieval techniques,
ontology and FCA based approach (Djeloul,
2012)

Prototype Case Study NA Low Low

Microservices identification through interface
analysis (Baresi et al., 2017)

NA Case Study NA Low Low

Extraction of microservices from monolithic
software architectures (Mazlami et al., 2017)

Prototype Industry NA High High

Service Cutter: A systematic approach to
service decomposition (Gysel et al., 2016)

ServiceCutter Experimental NA High High

Bottom-up and top-down cobol system
migration to web services (Rodriguez et al.,
2013)

Industry ready Industry NA High High

Functionality-Oriented microservice extraction
based on execution trace clustering (Jin et al.,
2018)

FOME Experimental NA Low Medium

An approach to align business and IT
perspectives during the SOA services
identification (Souza et al., 2017)

Prototype Experimental NA Low Low

Discovering microservices in enterprise
systems using a business object containment
heuristic (De Alwis et al., 2018a)

Prototype Industry NA Medium High

A heuristic approach to locate candidate web
service in legacy software (Abdelkader et al.,
2013)

Prototype Experimental NA Low Low

Identifying microservices using functional
decomposition (Tyszberowicz et al., 2018)

Prototype Experimental NA Low Low

Toward the understanding and evolution of
monolithic applications as microservices
(Escobar et al., 2016)

Prototype Industry NA High High

From monolithic systems to microservices: A
decomposition framework based on process
mining (Taibi and Systä, 2019)

Prototype Industry NA High High

Function-Splitting heuristics for discovery of
microservices in enterprise systems (De Alwis
et al., 2018b)

Prototype Industry NA Medium High

From a monolith to a microservices
architecture: An approach based on
transactional contexts (Nunes et al., 2019)

Prototype Experimental Medium Medium Medium

Re-architecting OO software into microservices
a quality-centered approach (Selmadji et al.,
2018)

Prototype Experimental NA Medium Medium
Fig. 2. Taxonomy of service identification approaches.
.1.2. Selection of the participants
We targeted developers with an industrial experience in SOA

igration. Identifying and soliciting such developers was chal-
enging. We relied on (1) information about companies that offer
odernization services, (2) online presentations and webinars
ade by legacy-to-SOA migration experts, and (3) search queries
16
on LinkedIn profiles: ‘‘legacy migration OR legacy modernization
OR SOA architect OR SOA migration OR Cloud migration OR
service migration OR service mining’’. We attempted neither to
be exhaustive in our search for participants nor to cover different
strata of developers working on SOA migration. As such, our
sample is a random sample of convenience.

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

t
s
t
a

7

t
w
g
c
S
a

7

s
e
p
e

m
o
i
i
i
W
c
i

7

t

P

f

Once we identified potential participants, we sent them invita-
ions via e-mail, LinkedIn, Facebook, and Twitter. We chose not to
olicit more than three participants from any given company (1)
o have a diversity of companies and (2) to avoid overburdening
single company.

.1.3. Administering the survey
We invited 289 participants and recommended about 15 min

o complete the survey. We asked potential participants to for-
ard our invitations to colleagues with experience in SOA mi-
ration in their social/professional networks. The survey was
ompleted by 47 participants, two of whom did not participate in
OA migration and whose answers we removed, for 45 complete
nswers.

.1.4. Validation of the survey
We assessed the reliability of the answers to the survey by

earching for spurious/facetious answers, contradictory answers,
tc. We also performed follow-up interviews with 24 of the 45
articipants who agreed to such interviews by providing their
-mail addresses.
We interviewed 8 of these 24 participants. We used a two-pass

ethod (Charmaz and Belgrave, 2012) to analyze our transcripts
f the individual interviews.3 We first performed a thematic cod-
ng to identify broad issues related to legacy-to-SOA migration
n general and SIAs in particular. We then performed an ax-
al coding to identify relationships among the identified issues.
e identified major issues related to our taxonomy using meta-

odes, which we then used to code manually the data of all the
nterviewees (Abdellatif et al., 2018).

.1.5. Validation of the taxonomy
We could then measure the precision and accuracy of our

axonomy (input, process, and output of SIAs) as:

recision =
TP

TP + FP

Recall =
TP

TP + FN
where TP (True Positive) corresponds to a leaf/answer identi-

ied by both a participant and our taxonomy, FP (False Positive)
corresponds to a leaf/answer identified in our taxonomy but
not mentioned by any participant, and FN (False Negative) cor-
responds to an answer from at least one participant but not
identified in our taxonomy.

We do not assess the usability of the SIAs for two reasons.
First, we did not want to overburden the participants with the
assessment of a very subjective metric and because we believe
that such a measure deserves a complete, independent study (in
future work).

7.2. Participants

We reached a total of 45 participants involved in legacy-to-
SOA migration projects in different capacities: 50% were software
architects, 23.7% were directors of technology, and 21% were soft-
ware engineers. The remaining 5.3% were migration specialists,
project managers, and CEOs.

The participants worked in different industries: 64% were
in technology and telecommunication, 20% in banking and in-
surance, 12.8% in health, and 3.2% in education. In terms of
experience, 78% had more than 10 years of experience, also
reflected in their age distributions: 23% were less than 35 years
old, 39% were between 36 and 45, 20.5% were between 46 and
55, and 17.5% were over 55.

3 https://goo.gl/ZYv2Ut for sample transcripts.
17
Table 9
Validation results of the service-identification taxonomy.
Feature Precision Recall

Inputs 93% 100%
Techniques 100% 82%
Quality metrics 100% 73%
Direction 100% 100%
Automation 100% 100%
Analysis type 100% 100%
Service types 100% 100%

7.3. Validation results

Table 9 shows the validation results of our taxonomy with
precision and recall: our taxonomy is conformed to the experts’
experiences with a precision between 93% and 100% and a recall
between 73% and 100%.

In particular, for inputs, precision is 93% and recall 100%. None
of the participants mentioned the use of test scenarios to identify
services. However, we kept this input in our taxonomy as it is
used by two SIAs. In terms of the techniques, recall is 82%, which
is acceptable, because some participants mentioned the use of in-
house tools or manual identification. For quality metrics, recall is
73%, which is acceptable, because some participants mentioned
the use of other economic quality metrics not considered in any of
the SIAs: identification cost, adaptation effort, and time to market.

8. Discussions

In this section, we will discuss our observations about the
studied SIAs in terms of the main nodes of our taxonomy: inputs,
processes, outputs, and usability.

8.1. Inputs

SIAs rely on diverse types of inputs to identify services. We
found that the most used inputs are source code and business-
process models (BPMs). Combining multiple inputs is also com-
mon. The most used combination of inputs are also source code
and BPMs (Sneed et al., 2013; Marchetto and Ricca, 2009; Zhang
et al., 2005; Fuhr et al., 2011). Only 10 SIAs rely on a single input
type (Adjoyan et al., 2014; Rodríguez-Echeverría et al., 2014;
Baghdadi, 2006; Chenghao et al., 2010; Saha, 2015; Mazlami et al.,
2017; Abdelkader et al., 2013; Escobar et al., 2016; Nunes et al.,
2019; Selmadji et al., 2018), either source code again or databases.

8.2. Processes

Most SIAs rely on clustering and custom heuristics to identify
services. The main challenge for these approaches is in using
adequate heuristics to identify services.

The success of a SOA depends on the quality of the services.
Services with low quality attributes may (1) affect reuse nega-
tively and (2) compromise business agility and reduce return on
investment (Huergo et al., 2014c). Quality attributes are therefore
important to identify services. However, not all service quality
requirements are considered by state-of-the-art SIAs. Moreover,
regardless of the adopted quality requirements, SIAs should pro-
vide means to assess/control the quality of the candidate services.
Also, there are many economic factors that SIAs should take
into account. Such aspects could be the implementation and
maintenance cost, the re-factoring cost of the system, and time-
to-market. The economic aspects of the identified methods are
widely ignored in the studied SIAs. We believe that more efforts
should be done in SIAs to consider as well such economic aspects
which play an important role to select the appropriate SIA for an
organization.

https://goo.gl/ZYv2Ut

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

8

a
s
s
t
f
t
e
i
S
s
s
a
h
d
m
W
t
s
r
w
p
s
t

8

o
r
t
s
t
r
t
o
a

S
s
s
c
s
a
t
p
q

9

b
2
2
T
B
i
t
a
f

b
g
e

.3. Outputs

We noticed that microservices architectures have been gaining
lot of consideration in the past few years as we found many

tudies focusing on the identification of microservices in legacy
ystems. The applied identification techniques are quite similar to
hose used for identifying services. On the other hand, few SIAs
ocus on the identification of specific types of services. In par-
icular we observed that these SIAs focus on identifying business,
ntity, and utility services but not enterprise/application-task and
nfrastructure services. Also, we noticed that these type-sensitive
IAs do not distinguish between enterprise and application task
ervices as the scope of reuse of the identified services is not well
pecified/studied. We believe that the identification of services
ccording to their types is a challenging problem because (1) we
ave to build a taxonomy that cover all service types, (2) define
etection rules/signature for each service type, and (3) target the
etrics or detection rules that are appropriate for each type.
e believe that not all service types have distinct signatures as

wo different service types may leave similar or indistinguishable
ignatures in the code. The taxonomy of service types may not be
epresentative of all existing service types. To mitigate this threat,
e validated our taxonomy through an industrial survey with 45
ractitioners who were involved in migration projects of legacy
ystems to SOA (Abdellatif et al., 2018). None of them mentioned
he identification of new/other types of services.

.4. Usability

We reported that 51% of the state-of-the-art SIAs have medium
r low usability degree due to (1) their lack of validation on
eal industrial systems, (2) their lack of tool support, and (3)
heir lack of automation. In particular, most SIAs consider only
mall examples in their validation, also confirmed by some par-
icipants in our survey (Abdellatif et al., 2018). The participants
eported that a problem exists in the knowledge transfer be-
ween academia and industry because of the lack of consideration
f enterprise-scaled systems to validate the proposed SIAs in
cademia.
Finally, we believe that measuring the usability of a given

IA is quite difficult. Our proposed metric may partially mea-
ure the usability of a given SIA as we do not cover all pos-
ible usability-related aspects. However, we tried our best to
onsider the most important usability criteria such as the tool
upport, the quality of SIA results, the validation of the process
nd the accuracy/precision of the SIA. As a future work, we aim
o empirically validate our proposed metric of usability with
eople from academia and industry to study its feasibility of
uantifying/estimating the usability degree of a SIA.

. Related work

Several systematic literature reviews and surveys on SIAs have
een proposed in the literature. In the period from 2009 to
019, ten surveys (Boerner and Goeken, 2009; Birkmeier et al.,
015; Gu and Lago, 2010; Cai et al., 2000; Vale et al., 2012;
aei Zadeh et al., 2012; Huergo et al., 2014c; Fritzsch et al., 2018;
ani-Ismail and Baghdadi, 2018a,b) on service identification were
dentified. Although these surveys had different goals, neither of
hem fully addressed all our research questions. Table 10 contains
summary and comparison between the most relevant surveys

ocusing on service identification in the literature.
For example, Boerner and Goeken (2009), only studied

usiness-driven SIAs techniques and focused on their strate-
ic and economic aspects. They stressed the consideration of
conomic aspects when identifying services based only on top
18
down approaches. Birkmeier and Overhage (2009) proposed a
classification of SIAs between 1984 and 2008. This SLR is indeed
old, does not fully addressed our research questions and does
not cover recent SIAs. Cai et al. (2011) proposed another survey
where they identified the most frequent activities in the state-
of-the-art SIAs between 2004 and 2011. Then, Vale et al. (2012)
made a comparison of SIAs and a list of recommendation of the
most suitable SI technique according to stakeholders’ needs in the
Service-Oriented Product Line Engineering context. Bani-Ismail
and Baghdadi (2018a,b) proposed two different surveys about
service identification. In the first one they studied the evaluation
frameworks for 24 state-of-the-art SIAs. In the second survey
they only identified the challenges of 14 service identification ap-
proaches and their limitations. Both studies do not fully address
our research questions as we do in our SLR.

Finally Fritzsch et al. (2018) provided a classification of refac-
toring approaches of monolithic applications to microservices.
They studied 10 microservices identification approaches and pro-
vided a guide for decomposition approaches using microservices
identification requirements.

Although there are several SLRs on service identification in
the literature, none of these surveys fully addressed our re-
search questions. Their focus differ deeply as we cover more
in details state-of-the-art service identification approaches in
terms of (1) the artifacts used by SIAs, (3) the processes of
these approaches, (4) the outputs of these processes, and (5)
the usability degree of these approaches. We also propose a
taxonomy of SIAs and validate its correctness and coverage with
industrial experts in legacy-to-SOA migration through surveys
and one-on-one interviews.

10. Conclusion and future work

We presented in this paper a systematic literature review
(SLR) on service identification approaches (SIAs) that use the
artifacts to build legacy software systems as input. We studied
the SIAs in terms of their inputs, their processes, their outputs,
and their usability. We built our taxonomy on our experience
with legacy software modernization, discussions with industrial
partners, and the analysis of existing SIAs. We validated the
correctness and the coverage of our taxonomy with industrial
experts in legacy-to-SOA migration through surveys and one-on-
one interviews. The validation results showed that our taxonomy
is conformed to the industrial experts’ experiences with 99% of
precision and 94% of recall.

The results of our SLR show that the state-of-the art SIAs are
still at their infancy mainly due to (1) the lack of validation on
real enterprise-scale systems; (2) the lack of tool support, and
(3) the lack of automation of SIAs. The results also show that
the proposed SIAs generally ignore the economic aspects of the
identification phase as well as the identification by service type.
Indeed despite of their importance in the migration process, only
few SIAs consider the economic aspects of the service identi-
fication process such as the implementation and maintenance
cost, the re-factoring cost of the system, and time-to-market.
Also, most of the existing SIAs look for services based on their
functional cohesion and low coupling with other parts of the
applications, regardless of service types. Furthermore, we showed
that the current trend of SIAs is the identification of microservices
in existing systems. However, the applied identification tech-
niques were very similar to those used for identifying services.
The granularity border between services and microservices is
still not well defined nor clearly discussed by these approaches.
Finally, we found that most SIAs usually do not try to improve the
quality attributes of the identified candidate services. We believe
that regardless of the sought quality attributes, SIAs should pro-
vide means to assess the quality of the identified services. Also,

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

T
S

d
S
t
A
e
c
e
A
o
s
t
t
s
i
s
a

A

r
d

R

A

A

able 10
ystematic literature reviews of Service Identification in the literature (A for Addressed, PA for Partially Addressed, NA for Not Addressed)
SIA Goal Year of publication Covered years Included papers RQ1 RQ2 RQ3 RQ4

Boerner and Goeken (2009) Business-driven SI techniques comparison with
the study of their strategic and economic
aspects

2009 2005–2008 5 NA PA PA A

Birkmeier et al. (2015) Classification of service identification
techniques

2009 1984*–2008 15 PA A PA NA

Gu and Lago (2010) Providing the basic elements of SI to help
practitioners selecting the most suitable one
basic on their needs

2010 2004–2009 30 A A A NA

Cai et al. (2011) Identify frequent used activities done in
several SI research works

2011 2004–2011 41 PA A PA NA

Vale et al. (2012) Comparison of SI methods and
recommendation of the most suitable SI
technique according to stakeholders’ needs in
the Service-Oriented Product Line Engineering
context

2012 2005–2012 32 PA PA PA PA

Taei Zadeh et al. (2012) Suitable inputs identification for SI methods in
small and medium enterprise

2012 2002–2010 48 PA PA PA NA

Huergo et al. (2014c) Classification of SI methods 2014 2002–2013 105 PA A PA NA

Bani-Ismail and Baghdadi (2018b) Exploring existing evaluation frameworks for
state-of-the-art SIAs

2018 2007–2016 23 PA PA NA PA

Bani-Ismail and Baghdadi (2018a) Identifying service identification challenges in
service oriented architecture

2018 2005–2016 14 PA NA NA NA

Fritzsch et al. (2018) Classification of Refactoring Approaches of
monolithic applications to microservices

2018 2015–2017 10 PA PA PA NA

Our SLR Focusing on bottom-up and hybrid SIAs based
on the used input, the applied process, the
generated output and the usability of the
approach Reviewing SI from the point of view
of researchers and practitioners interest

2020 2004–2019 41 A A A A
we believe that more work should be done to automate the SIAs
and consider enterprise-scaled systems to validate the proposed
approaches.

As future work, we will generalize our survey and study top-
own service identification approaches. We will study in detail
IAs that use some architecture-centric methods such as Archi-
ecture Tradeoff Analysis Method (ATAM) (Kazman et al., 1998),
ttribute-Driven Design (ADD) (Nord et al., 2004), and Cost Ben-
fit Analysis Method (CBAM) (Nord et al., 2003). These methods
ould assist a service identification approach by providing and
valuating architectural descriptions of the system to migrate.
lso, we will study empirically the gap of the state of the practices
f SIAs between academia and industry. We want to identify is-
ues that the research community can address to ease knowledge
ransfer between academia and industry in the context of legacy-
o-SOA migration. Finally, we believe that the identification of
ervices according to their types is a challenging but interest-
ng problem. As future work, we aim to propose a type-centric
ervice identification approach that promote better reuse at the
pplication, enterprise, and business levels.

cknowledgment

The authors would like to thank all the practitioners who
eplied to us. This work was supported by the Fonds de Recherche
u Quebec Nature et Technologies (FRQNT) N2016-PR-191087.

eferences

bdelkader, Mostefai, Malki, Mimoun, Benslimane, Sidi Mohamed, 2013. A
heuristic approach to locate candidate web service in legacy software. Int. J.
Comput. Appl. Technol. 47 (2–3), 152–161.

bdellatif, Manel, Hecht, Geoffrey, Mili, Hafedh, Elboussaidi, Ghizlane,
Moha, Naouel, Shatnawi, Anas, Privat, Jean, Guéhéneuc, Yann-Gaël, 2018.
State of the practice in service identification for soa migration in industry.
In: International Conference on Service-Oriented Computing. Springer, pp.
634–650.
19
Adjoyan, Seza, Seriai, Abdelhak-Djamel, Shatnawi, Anas, 2014. Service identifi-
cation based on quality metrics - object-oriented legacy system migration
towards SOA. In: The 26th International Conference on Software Engineering
and Knowledge Engineering. Hyatt Regency, Vancouver, BC, Canada, pp. 1–6.

Aggarwal, Manuj, Sabharwal, Sangeeta, 2012. Test case generation from UML
state machine diagram: A survey. In: Computer and Communication
Technology (ICCCT), 2012 Third International Conference on. IEEE, pp.
133–140.

Alahmari, Saad, Zaluska, Ed, De Roure, David, 2010. A service identification
framework for legacy system migration into SOA. In: Services Computing
(SCC), 2010 IEEE International Conference on. IEEE, pp. 614–617.

Alkkiomäki, Ville, Smolander, Kari, 2016. Anatomy of one service-oriented
architecture implementation and reasons behind low service reuse. Serv.
Orient. Comput. Appl. 10 (2), 207–220.

Ambler, Scott W., 2004. The Object Primer: Agile Model-Driven Development
with UML 2.0. Cambridge University Press.

Amiri, Mohammad Javad, Parsa, Saeed, Lajevardi, Amir Mohammadzade, 2016.
Multifaceted service identification: Process, requirement and data. Comput.
Sci. Inform. Syst. 13 (2), 335–358.

Ani, Bashar Al, Baghdadi, Youcef, 2015. A taxonomy-centred process for service
engineering. Int. J. Comput. Appl. Technol. 52 (1), 1–17.

Aversano, Lerina, Cerulo, Luigi, Palumbo, Ciro, 2008. Mining candidate web
services from legacy code. In: 10th International Symposium on Web Site
Evolution. IEEE, pp. 37–40.

Baghdadi, Youcef, 2006. Reverse engineering relational databases to identify
and specify basic web services with respect to service oriented computing.
Inform. Syst. Front. 8 (5), 395–410.

Balabanović, Marko, Shoham, Yoav, 1997. Fab: content-based, collaborative
recommendation. Commun. ACM 40 (3), 66–72.

Bani-Ismail, Basel, Baghdadi, Youcef, 2018a. A literature review on service
identification challenges in service oriented architecture. In: International
Conference on Knowledge Management in Organizations. Springer, pp.
203–214.

Bani-Ismail, Basel, Baghdadi, Youcef, 2018b. A survey of existing evaluation
frameworks for service identification methods: towards a comprehen-
sive evaluation framework. In: International Conference on Knowledge
Management in Organizations. Springer, pp. 191–202.

Bao, Liang, Yin, Chao, He, Weigang, Ge, Jun, Chen, Ping, 2010. Extracting reusable
services from legacy object-oriented systems. In: Software Maintenance
(ICSM), 2010 IEEE International Conference on. IEEE, pp. 1–5.

http://refhub.elsevier.com/S0164-1212(20)30258-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb1
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb2
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb3
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb4
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb5
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb6
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb7
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb8
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb9
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb10
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb11
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb12
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb13
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb14
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb15
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb15

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

B

B

B

B
B

B

B

C

C

C

C

C

C

C

D

D

D

D

E

E

E
E

F

F

aresi, Luciano, Garriga, Martin, De Renzis, Alan, 2017. Microservices identifica-
tion through interface analysis. In: European Conference on Service-Oriented
and Cloud Computing. Springer, pp. 19–33.

echhofer, Sean, 2009. OWL: Web ontology language. In: Encyclopedia of
Database Systems. Springer, pp. 2008–2009.

ell, Michael, 2009. SOA Modeling Patterns for Service Oriented Discovery and
Analysis. John Wiley & Sons.

irkhoff, Garrett, 1940. Lattice Theory, Vol. 25. American Mathematical Soc..
irkmeier, Dominik, Klöckner, Sebastian, Overhage, Sven, 2015. A survey of

service identification approaches-classification framework, state of the art,
and comparison. Enterp. Model. Inform. Syst. Arch. 4 (2), 20–36.

irkmeier, Dominik, Overhage, Sven, 2009. On component identification
approaches–classification, state of the art, and comparison. In: Component-
Based Software Engineering. Springer, pp. 1–18.

oerner, René, Goeken, Matthias, 2009. Service identification in SOA governance
literature review and implications for a new method. In: Digital Ecosystems
and Technologies, 2009. DEST’09. 3rd IEEE International Conference on. IEEE,
pp. 588–593.

ai, Simin, Liu, Yan, Wang, Xiaoping, 2011. A survey of service identifica-
tion strategies. In: Services Computing Conference (APSCC), 2011 IEEE
Asia-Pacific. IEEE, pp. 464–470.

ai, Xia, Lyu, Michael R., Wong, Kam-Fai, Ko, Roy, 2000. Component-based
software engineering: technologies, development frameworks, and quality
assurance schemes. In: Software Engineering Conference, 2000. APSEC 2000.
Proceedings. Seventh Asia-Pacific. IEEE, pp. 372–379.

anfora, Gerardo, Fasolino, Anna Rita, Frattolillo, Gianni, Tramontana, Porfirio,
2006. Migrating interactive legacy systems to web services. In: Conference
on Software Maintenance and Reengineering (CSMR’06). IEEE, pp. 10–pp.

harmaz, Kathy, Belgrave, Liska, 2012. Qualitative interviewing and grounded
theory analysis. In: The SAGE handbook of interview research. pp. 347–365.

hen, Feng, Zhang, Zhuopeng, Li, Jianzhi, Kang, Jian, Yang, Hongji, 2009. Service
identification via ontology mapping. In: 2009 33rd Annual IEEE International
Computer Software and Applications Conference, Vol. 1. IEEE, pp. 486–491.

henghao, Guo, Min, Wang, Xiaoming, Zhou, 2010. A wrapping approach and
tool for migrating legacy components to web services. In: First International
Conference on Networking and Distributed Computing (ICNDC),2010. IEEE,
pp. 94–98.

ohen, Shy, 2007. Ontology and taxonomy of services in a service-oriented
architecture. Arch. J. 11 (11), 30–35.

e Alwis, Adambarage Anuruddha Chathuranga, Barros, Alistair, Fidge, Colin,
Polyvyanyy, Artem, 2018a. Discovering microservices in enterprise systems
using a business object containment heuristic. In: OTM Confederated Interna-
tional Conferences" on the Move To Meaningful Internet Systems". Springer,
pp. 60–79.

e Alwis, Adambarage Anuruddha Chathuranga, Barros, Alistair,
Polyvyanyy, Artem, Fidge, Colin, 2018b. Function-splitting heuristics
for discovery of microservices in enterprise systems. In: International
Conference on Service-Oriented Computing. Springer, pp. 37–53.

el Grosso, Concettina, Di Penta, Massimiliano, de Guzman, Ignacio Garcia-
Rodriguez, 2007. An approach for mining services in database oriented
applications. In: 11th European Conference on Software Maintenance and
Reengineering, 2007. CSMR’07. IEEE, pp. 287–296.

jeloul, M.A.M., 2012. Locating services in legacy software:information retrieval
techniques, ontology and FCA based approach. WSEAS Trans. Comput.
11 (1), 19–26, legacy software;information retrieval techniques;FCA based
approach;Web services technology;WORDNET ontology;formal concepts
analysis;source code;.

rl, Thomas, 2005. Service-Oriented Architecture, Vol. 8. Pearson Education
Incorporated.

rl, Thomas, 2007. SOA Principles of Service Design. Prentice Hall PTR, Upper
Saddle River, NJ, USA.

rl, Thomas, 2008. SOA Design Patterns. Pearson Education.
scobar, Daniel, Cárdenas, Diana, Amarillo, Rolando, Castro, Eddie, Garcés, Kelly,

Parra, Carlos, Casallas, Rubby, 2016. Towards the understanding and evolu-
tion of monolithic applications as microservices. In: 2016 XLII Latin American
Computing Conference (CLEI). IEEE, pp. 1–11.

elizardo, Katia Romero, Mendes, Emilia, Kalinowski, Marcos, Souza, Érica Fer-
reira, Vijaykumar, Nandamudi L, 2016. Using forward snowballing to update
systematic reviews in software engineering. In: Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement. ACM, p. 53.

euerlicht, George, et al., 2007. Understanding service reusability. In: In-
ternational Conference Systems Integration. Department of Information
Technologies and Czech Society for Systems Integration.
20
Fritzsch, Jonas, Bogner, Justus, Zimmermann, Alfred, Wagner, Stefan, 2018. From
monolith to microservices: a classification of refactoring approaches. In:
International Workshop on Software Engineering Aspects of Continuous
Development and New Paradigms of Software Production and Deployment.
Springer, pp. 128–141.

Fuhr, Andreas, Horn, Tassilo, Riediger, Volker, 2011. Using dynamic analysis and
clustering for implementing services by reusing legacy code. In: Reverse
Engineering (WCRE), 2011 18th Working Conference on. IEEE, pp. 275–279.

Furda, Andrei, Fidge, Colin, Zimmermann, Olaf, Kelly, Wayne, Barros, Alis-
tair, 2017. Migrating enterprise legacy source code to microservices: on
multitenancy, statefulness, and data consistency. IEEE Software 35 (3), 63–72.

Ganter, Bernhard, 2010. Two basic algorithms in concept analysis. Formal
Concept Anal. 312–340.

Gratzer, George, 2009. Lattice Theory: First Concepts and Distributive Lattices.
Courier Corporation.

Gu, Qing, Lago, Patricia, 2010. Service identification methods: a systematic
literature review. In: Towards a Service-Based Internet. Springer, pp. 37–50.

Gysel, Michael, Kölbener, Lukas, Giersche, Wolfgang, Zimmermann, Olaf, 2016.
Service cutter: A systematic approach to service decomposition. In: Euro-
pean Conference on Service-Oriented and Cloud Computing. Springer, pp.
185–200.

Hix, Deborah, Hartson, H. Rex, 1993. Developing User Interfaces: Ensuring
Usability Through Product & Process. John Wiley & Sons, Inc..

Huergo, Rosane S., Pires, Paulo F., Delicato, Flávia C., 2014a. Mdcsim: A method
and a tool to identify services. IT Converg. Pract. 2 (4), 1–27.

Huergo, Rosane S., Pires, Paulo F., Delicato, Flavia C., 2014b. A method to
identify services using master data and artifact-centric modeling approach.
In: Proceedings of the 29th Annual ACM Symposium on Applied Computing.
ACM, pp. 1225–1230.

Huergo, Rosane S, Pires, Paulo F, Delicato, Flavia C, Costa, Bruno, Cavalcante, Ev-
erton, Batista, Thais, 2014c. A systematic survey of service identification
methods. Serv. Orient. Comput. Appl. 8 (3), 199–219.

Jain, Anil K., 2010. Data clustering: 50 years beyond K-means. Pattern Recognit.
Lett. 31 (8), 651–666.

Jain, Hemant, Zhao, Huimin, Chinta, Nageswara R., 2004. A spanning tree based
approach to identifying web services. Int. J. Web Serv. Res. 1 (1), 1.

Jin, Wuxia, Liu, Ting, Zheng, Qinghua, Cui, Di, Cai, Yuanfang, 2018. Functionality-
oriented microservice extraction based on execution trace clustering. In:
2018 IEEE International Conference on Web Services (ICWS). IEEE, pp.
211–218.

Kazman, Rick, Klein, Mark, Barbacci, Mario, Longstaff, Tom, Lipson, Howard,
Carriere, Jeromy, 1998. The architecture tradeoff analysis method. In: Pro-
ceedings. Fourth IEEE International Conference on Engineering of Complex
Computer Systems (Cat. No. 98EX193). IEEE, pp. 68–78.

Khadka, Ravi, Saeidi, Amir, Jansen, Slinger, Hage, Jurriaan, 2013. A struc-
tured legacy to SOA migration process and its evaluation in practice. In:
Maintenance and Evolution of Service-Oriented and Cloud-Based Systems
(MESOCA), 2013 IEEE 7th International Symposium on the. IEEE, pp. 2–11.

Khadka, Ravi, Shrestha, Prajan, Klein, Bart, Saeidi, Amir, Hage, Jurriaan,
Jansen, Slinger, van Dis, Edwin, Bruntink, Magiel, 2015. Does software mod-
ernization deliver what it aimed for? A post modernization analysis of five
software modernization case studies. In: 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME). IEEE, pp. 477–486.

Kim, Yukyong, Doh, Kyung-Goo, 2007. The service modeling process based on
use case refactoring. In: International Conference on Business Information
Systems. Springer, pp. 108–120.

Kitchenham, Barbara, 2004. Procedures for performing systematic reviews. Keele,
UK, Keele University 33 (2004), 1–26.

Krafzig, Dirk, Banke, Karl, Slama, Dirk, 2005. Enterprise SOA: Service-Oriented
Architecture Best Practices. Prentice Hall Professional.

Lethbridge, Timothy C., Singer, Janice, Forward, Andrew, 2003. How software
engineers use documentation: The state of the practice. IEEE Softw. 20 (6),
35–39.

Lewis, Grace, Morris, Ed, O’Brien, Liam, Smith, Dennis, Wrage, Lutz, 2005. SMART:
The Service-Oriented Migration and Reuse Technique. Technical report, DTIC
Document.

Mani, Senthil, Sinha, Vibha S, Sukaviriya, Noi, Ramachandra, Thejaswini, 2008.
Using user interface design to enhance service identification. In: Web
Services, 2008. ICWS’08. IEEE International Conference on. IEEE, pp. 78–87.

Marchetto, Alessandro, Ricca, Filippo, 2009. From objects to services: toward
a stepwise migration approach for java applications. Int. J. Softw. Tools
Technol. Transf. 11 (6), 427.

Mazlami, Genc, Cito, Jürgen, Leitner, Philipp, 2017. Extraction of microser-
vices from monolithic software architectures. In: 2017 IEEE International
Conference on Web Services (ICWS). IEEE, pp. 524–531.

http://refhub.elsevier.com/S0164-1212(20)30258-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb16
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb17
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb18
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb19
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb20
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb21
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb22
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb23
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb24
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb25
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb26
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb26
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb26
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb27
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb28
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb29
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb30
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb31
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb32
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb33
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb34
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb35
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb36
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb37
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb38
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb39
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb40
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb41
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb42
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb43
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb44
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb45
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb46
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb47
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb48
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb49
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb50
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb51
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb52
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb53
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb54
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb55
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb56
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb57
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb58
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb58
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb58
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb59
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb60
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb61
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb61
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb61
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb61
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb61
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb62
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb63
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb64
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb64
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb64
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb64
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb64

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

M

N

N

N

N

N

N

P

R

R

S

S
S

S

S

S

S

S

S

S

S

T

urtagh, Fionn, Legendre, Pierre, 2014. Ward’s hierarchical agglomerative
clustering method: which algorithms implement ward’s criterion?. J.
Classification 31 (3), 274–295.

akamur, Masahide, Igaki, Hiroshi, Kimura, Takahiro, Matsumoto, Kenichi, 2012.
Identifying services in procedural programs for migrating legacy system
to service oriented architecture. Implementation Integr. Inform. Syst. Serv.
Sector 237.

akamura, Masahide, Igaki, Hiroshi, Kimura, Takahiro, Matsumoto, Ken-ichi,
2009. Extracting service candidates from procedural programs based on
process dependency analysis. In: Services Computing Conference, 2009.
APSCC 2009. IEEE Asia-Pacific. IEEE, pp. 484–491.

ewman, Sam, 2015. Building Microservices: Designing Fine-Grained Systems. "
O’Reilly Media, Inc.".

ord, Robert L, Barbacci, Mario R, Clements, Paul, Kazman, Rick, Klein, Mark,
2003. Integrating the Architecture Tradeoff Analysis Method (ATAM) with
the cost benefit analysis method (CBAM). Technical report, Carnegie-Mellon
Univ Pittsburgh Pa Software Engineering Inst.

ord, R.L., et al., 2004. Integrating the Quality Attribute Workshop (QAW)
and the Attribute-Driven Design (ADD) Method. Inf. Téc. Technical report,
CMU/SEI-2004-TN-017, Software Engineering Institute–Carnegie Mellon

unes, Luís, Santos, Nuno, Silva, António Rito, 2019. From a monolith to a
microservices architecture: An approach based on transactional contexts. In:
European Conference on Software Architecture. Springer, pp. 37–52.

erepletchikov, Mikhail, Ryan, Caspar, Frampton, Keith, Tari, Zahir, 2007. Cou-
pling metrics for predicting maintainability in service-oriented designs. In:
2007 Australian Software Engineering Conference (ASWEC’07). IEEE, pp.
329–340.

odriguez, Juan Manuel, Crasso, Marco, Mateos, Cristian, Zunino, Alejandro,
Campo, Marcelo, 2013. Bottom-up and top-down cobol system migration
to web services. IEEE Internet Comput. 17 (2), 44–51.

odríguez-Echeverría, Roberto, Maclas, Fernando, Pavón, Vlctor M, Cone-
jero, José M, Sánchez-Figueroa, Fernando, 2014. Generating a REST service
layer from a legacy system. In: Information System Development. Springer,
pp. 433–444.

aha, Diptikalyan, 2015. Service mining from legacy database applications. In:
Web Services (ICWS), 2015 IEEE International Conference on. IEEE, pp.
448–455.

chmuller, Joseph, 2004. Sams Teach Yourself UML in 24 hours. Sams publishing.
elmadji, Anfel, Seriai, Abdelhak-Djamel, Bouziane, Hinde Lilia, Dony, Christophe,

Mahamane, Rahina Oumarou, 2018. Re-architecting OO software into
microservices. In: European Conference on Service-Oriented and Cloud
Computing. Springer, pp. 65–73.

hatnawi, Anas, Shatnawi, Hudhaifa, Saied, Mohamed Aymen, Shara, Zakarea Al,
Sahraoui, Houari, Seriai, Abdelhak, 2018. Identifying software components
from object-oriented APIs based on dynamic analysis. In: Proceedings of the
26th Conference on Program Comprehension. ACM, pp. 189–199.

indhgatta, Renuka, Sengupta, Bikram, Ponnalagu, Karthikeyan, 2009. Measuring
the quality of service oriented design. In: Service-Oriented Computing.
Springer, pp. 485–499.

need, Harry M., 2006. Integrating legacy software into a service oriented
architecture. In: Software Maintenance and Reengineering, 2006. CSMR 2006.
Proceedings of the 10th European Conference on. IEEE, pp. 11–pp.

need, Harry, 2007. Migrating to Web services: A research framework, In:
Proceedings of the International.

need, Harry M., Verhoef, Chris, Sneed, Stephan H., 2013. Reusing existing object-
oriented code as web services in a SOA. In: Maintenance and Evolution
of Service-Oriented and Cloud-Based Systems (MESOCA), 2013 IEEE 7th
International Symposium on the. IEEE, pp. 31–39.

osa, Encarna, Clemente, Pedro J, Conejero, José M, Rodríguez-
Echeverría, Roberto, 2013. A model-driven process to modernize legacy
web applications based on service oriented architectures. In: 2013 15th
IEEE International Symposium on Web Systems Evolution (WSE). IEEE, pp.
61–70.

osa-Sánchez, Encarna, Clemente, Pedro J, Sánchez-Cabrera, Miguel, Cone-
jero, José M, Rodríguez-Echeverría, Roberto, Sánchez-Figueroa, Fernando,
2014. Service discovery using a semantic algorithm in a SOA modernization
process from legacy web applications. In: Services (SERVICES), 2014 IEEE
World Congress on. IEEE, pp. 470–477.

ouza, Eric, Moreira, Ana, De Faveri, Cristiano, 2017. An approach to align
business and IT perspectives during the soa services identification. In: 2017
17th International Conference on Computational Science and Its Applications
(ICCSA). IEEE, pp. 1–7.

aei Zadeh, Ali, Mukhtar, Muriati, Sahran, Shahnorbanun, Khabbazi, Mah-
mood Reza, 2012. A systematic input selection for service identification in
SMEs. J. Appl. Sci. 12 (12), 1232–1244.
21
Taibi, Davide, Systä, Kari, 2019. From monolithic systems to microservices: A
decomposition framework based on process mining. In: 8th International
Conference on Cloud Computing and Services Science, CLOSER.

Tyszberowicz, Shmuel, Heinrich, Robert, Liu, Bo, Liu, Zhiming, 2018. Identifying
microservices using functional decomposition. In: International Symposium
on Dependable Software Engineering: Theories, Tools, and Applications.
Springer, pp. 50–65.

Vale, Tassio, Figueiredo, Gustavo Bittencourt, de Almeida, Eduardo Santana,
de Lemos Meira, Silvio Romero, 2012. A study on service identification
methods for software product lines. In: Proceedings of the 16th International
Software Product Line Conference-Volume 2. ACM, pp. 156–163.

Vemulapalli, Anisha, Subramanian, Nary, 2009. Transforming functional require-
ments from UML into BPEL to efficiently develop SOA-based systems. In:
OTM Confederated International Conferences on the Move to Meaningful
Internet Systems. Springer, pp. 337–349.

Wagner, Christian, 2014. Model-Driven Software Migration: A Methodology:
Reengineering, Recovery and Modernization of Legacy Systems. Springer
Science & Business Media.

Weske, Mathias, 2012. Business process management architectures. In: Business
Process Management. Springer, pp. 333–371.

Wille, Rudolf, 1982. Restructuring lattice theory: an approach based on
hierarchies of concepts. In: Ordered Sets. Springer, pp. 445–470.

Wohlin, Claes, 2014. Guidelines for snowballing in systematic literature studies
and a replication in software engineering. In: Proceedings of the 18th Inter-
national Conference on Evaluation and Assessment in Software Engineering.
ACM, p. 38.

Xu, Rui, Wunsch, D., 2005. Survey of clustering algorithms. IEEE Trans. Neural
Netw. 16 (3), 645–678. http://dx.doi.org/10.1109/TNN.2005.845141.

Zadeh, Ali Taei, Mukhtar, Muriati, Sahran, Shahnorbanun, Khabbazi, MR, 2012. A
systematic input selection for service identification in SMEs. J. Appl. Sci. 12
(12), 1232.

Zhang, Zhuopeng, Liu, Ruimin, Yang, Hongji, 2005. Service identification and
packaging in service oriented reengineering. In: SEKE. 5, pp. 620–625.

Zhang, Zhuopeng, Yang, Hongji, 2004. Incubating services in legacy systems
for architectural migration. In: 11th Asia-Pacific Software Engineering
Conference, 2004. IEEE, pp. 196–203.

Zhang, Zhuopeng, Yang, Hongji, Chu, William C., 2006. Extracting reusable
object-oriented legacy code segments with combined formal concept analysis
and slicing techniques for service integration. In: 2006 Sixth International
Conference on Quality Software (QSIC’06). IEEE, pp. 385–392.

Zhao, Shuxin, Chang, Elizabeth, Dillon, Tharam, 2008. Knowledge extraction from
web-based application source code: An approach to database reverse engi-
neering for ontology development. In: 2008 IEEE International Conference
on Information Reuse and Integration. IEEE, pp. 153–159.

Zhao, Yun, Si, Huayou, Ni, Yulin, Qi, Hengnian, 2009. A service-oriented analysis
and design approach based on data flow diagram. In: International Con-
ference on Computational Intelligence and Software Engineering CiSE 2009.
IEEE, pp. 1–5.

Manel Abdellatif, is a Ph.D. student at Polytechnique Montreal. Her research
focus is on service identification to support the migration of legacy object-
oriented software systems to SOA. She holds a Master degree from Ecole
de Technologie Supérieure in Canada and an engineering degree from Ecole
Nationale d’Ingénieurs de Tunis.

Her research interests focus on automated software engineering including:
reengineering and reverse engineering, empirical software engineering, software
reuse, maintenance, evolution, program analysis and refactoring, data mining for
software engineering.

Anas Shatnawi is a postdoc researcher at LIP6 lab of Sorbonne University, Paris,
France. Before Joining Sorbonne University, he was a postdoctoral researcher
at LTA lab of Università degli Studi di Milano-Bicocca (UniMib) and at LATECE
of Université du Québec à Montréal (UQAM), Canada. He obtained his Ph.D.
degree in Computer Science from LIRMM at the Université de Montpellier,
France. He worked under the supervision of Prof. Abdelhak Seriai, University
of Montpellier and Prof. Houari Sahraoui, University of Montreal, Canada. He
received his Master and bachelor’s degrees in computer science respectively
from Jordan University of Science and Technology and Irbid National University,
Jordan. He also worked in industry for more than 4 years as software developer
at Maysalward R&D, Jordan.

Hafedh Mili is a Professor at Université du Québec à Montréal. He obtained his
Ph.D. in Computer Science (Artificial Intelligence) from the George Washington
University in 1988.

http://refhub.elsevier.com/S0164-1212(20)30258-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb65
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb66
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb67
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb68
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb69
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb70
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb71
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb72
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb73
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb74
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb75
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb76
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb77
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb78
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb79
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb80
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb82
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb83
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb84
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb85
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb86
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb86
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb86
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb86
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb86
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb87
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb87
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb87
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb87
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb87
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb88
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb89
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb90
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb91
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb91
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb91
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb91
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb91
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb92
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb92
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb92
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb93
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb93
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb93
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb94
http://dx.doi.org/10.1109/TNN.2005.845141
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb96
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb96
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb96
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb96
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb96
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb97
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb97
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb97
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb98
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb98
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb98
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb98
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb98
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb99
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb100
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101
http://refhub.elsevier.com/S0164-1212(20)30258-2/sb101

M. Abdellatif, A. Shatnawi, H. Mili et al. The Journal of Systems & Software 173 (2021) 110868

e
e
l
a

N
C
à
s
r
P
t
H
r
s

G
M
f
a
m
m
h
d

His research interest focuses on software development from business mod-
ls, representation and classification of business processes, representation and
xecution of flexible processes, pattern making, software re-engineering of
egacy applications, customer experience management, the internet of things,
nd intelligent processes and infrastructure.

aouel Moha is a Professor at École de Technologie Supérieure, Montreal,
anada since September 2020. She was before professor at Université du Québec
Montréal (UQAM), Canada. She received the master’s degree in computer

cience from the University of Joseph Fourier, Grenoble, in 2002. She also
eceived the Ph.D. degree, in 2008, from the University of Montreal (under
rofessor Yann-Gaël Guéhéneuc’s supervision) and the University of Lille (under
he supervision of Professor Laurence Duchien and Anne-Françoise Le Meur).
er research interests include software quality and evolution, in particular
efactoring and the identification of patterns and antipatterns in different
ystems including service-based systems and mobile apps.

hizlane El Boussaidi is a Professor at École de Technologie Supérieure,
ontreal, Canada since 2010. She obtained her Ph.D. in Software engineering

rom Université de Montréal, Canada. Her research interests include software
rchitecture, design patterns and architectural styles, architecture recovery,
odernization of legacy systems, model-driven engineering, domain-specific
odeling, and the design and certification of safety critical systems. She also
as over 15 years of industrial experience during which she contributed to the
evelopment and the implementation of various software systems.
22
Geoffrey Hecht is a Postdoctoral Research Fellow at Université du Québec à
Montréal (UQAM) in Canada and at Departamento de Ciencias de la Com-
putacion, FCFM, Universidad de Chile. His research interests include mobile
computing, cloud computing and legacy-to-SOA migration.

Jean Privat is a Professor at Université du Québec à Montréal (UQAM) in
Canada. His research interests include specification and implementation of object
languages Compilers, code generators, and virtual machines.

Yann-Gaël Guéhéneuc is a Professor at Concordia University where he leads the
Ptidej team on evaluating and enhancing the quality of object-oriented programs
by promoting the use of patterns, at the language-, design-, or architectural-
levels. In 2009, he was awarded the NSERC Research Chair Tier II on Software
Patterns and Patterns of Software. He holds a Ph.D. in software engineering
from University of Nantes, France (under Professor Pierre Cointe’s supervision)
since 2003 and an Engineering Diploma from École des Mines of Nantes
since 1998. His Ph.D. thesis was funded by Object Technology International,
Inc. (now IBM OTI Labs.), where he worked in 1999 and 2000. His research
interests are program understanding and program quality during development
and maintenance, through the use and the identification of recurring patterns.
He was the first to use explanation-based constraint programming in the context
of software engineering to identify occurrences of patterns. He is interested also
in empirical software engineering; he uses eye-trackers to understand and to
develop theories about program comprehension. He has published many papers
in international conferences and journals.

	A taxonomy of service identification approaches for legacy software systems modernization
	Introduction
	Research questions
	Outline

	Search methodology
	
	Executable models
	Source code
	Databases
	Test cases

	Non-executable models
	Runtime artifacts
	Model artifacts

	Domain artifacts
	Documentation
	Human expertise
	Ontologies

	
	Techniques of SIAs
	Wrapping
	Genetic algorithms
	Formal concept analysis
	Clustering
	Custom heuristics
	General guidelines

	Quality of identified services
	Quality requirements
	Quality metrics

	Directions of SIAs
	Analyses types

	Automation of SIAs

	
	Service architecture
	Service types

	
	Validation
	Accuracy/precision
	Tool support
	Result quality
	Usability

	Taxonomy and validation
	Methodology
	Preparation of the survey
	Selection of the participants
	Administering the survey
	Validation of the survey
	Validation of the taxonomy

	Participants
	Validation results

	Discussions
	Inputs
	Processes
	Outputs
	Usability

	Related work
	Conclusion and future work
	Acknowledgment
	References

