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Abstract. [Context and Motivation] Content-based recommender
systems for requirements are typically built on the assumption that sim-
ilar requirements can be used as proxies to retrieve similar software.
When a new requirement is proposed by a stakeholder, natural language
processing (NLP)-based similarity metrics can be exploited to retrieve
existing requirements, and in turn identify previously developed code.
[Question/problem] Several NLP approaches for similarity computa-
tion are available, and there is little empirical evidence on the adoption
of an effective technique in recommender systems specifically oriented to
requirements-based code reuse. [Principal ideas/results] This study
compares different state-of-the-art NLP approaches and correlates the
similarity among requirements with the similarity of their source code.
The evaluation is conducted on real-world requirements from two in-
dustrial projects in the railway domain. Results show that requirements
similarity computed with the traditional tf-idf approach has the highest
correlation with the actual software similarity in the considered context.
Furthermore, results indicate a moderate positive correlation with Spear-
man’s rank correlation coefficient of more than 0.5. [Contribution] Our
work is among the first ones to explore the relationship between require-
ments similarity and software similarity. In addition, we also identify
a suitable approach for computing requirements similarity that reflects
software similarity well in an industrial context. This can be useful not
only in recommender systems but also in other requirements engineering
tasks in which similarity computation is relevant, such as tracing and
categorization.
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1 Introduction

Recommender systems have been widely studied in requirements engineering
(RE) [14, 28, 19], and several diverse applications of this paradigm have been pro-
posed in the literature. These include stakeholder recommendation for require-
ments discussions [8], refactoring recommendation based on feature requests [27]
and also bid management [14]. One typical application scenario of recommender
systems in RE is related to requirements retrieval [20, 9] in reactive software
product line engineering (SPLE) [35, 22]. With SPLE, companies manage soft-
ware reuse in a structured way to satisfy multiple variations of customer require-
ments while minimizing development effort [29]. Specifically, in a reactive SPLE
context [22], when a new requirement is proposed, the requirements analyst looks
for reuse opportunities and compares the new proposal with existing require-
ments in order to adapt their previously developed models and implementations.
This can be supported by content-based recommender systems [24], which, given
a new requirement, return the most similar ones in a historical database of prod-
uct releases, together with the associated artifacts. The rationale of the approach
is that similar requirements can be used as proxies to retrieve similar software,
i.e., code that can be adapted with little effort to address the new needs. Differ-
ent NLP techniques exist to compute semantic requirements similarity, and the
recent emerging of novel NLP language models provides promising options [38].
However, it is unclear to which extent requirements similarity implies software
similarity and what are the most effective techniques to support requirements
similarity computation in a way that is optimized for code retrieval. This paper
aims to empirically study the problem in the context of the requirements of Bom-
bardier Transportation AB (BT), a world-leading railway company. The main
objective of this study is to improve the requirement-based software retrieval
process in the studied setting. To study the relationship between requirements
similarity and software similarity, we consider 254 real-world requirements re-
lated to two Power Propulsion Control (PPC) projects. We consider different
state-of-the-art language models to semantically represent the requirements and
support similarity computation, namely the traditional tf-idf [25], and the more
advanced Doc2Vec [23], FastText [5], and Bidirectional Encoder Representations
from Transformers (BERT) [10]. Surprisingly, our results show that, in our con-
text, the traditional tf-idf model is the one that leads to the highest correlation
with the software similarity, computed with JPLag [30]. Furthermore, we show
that, with the exception of the Doc2Vec case, the correlation between require-
ments similarity and code similarity is moderate. This provides some evidence
that similar implementations realize similar requirements in the context of the
considered case study but also suggests that there is further space for research
about novel methods to retrieve similar software that goes beyond requirements
similarity.

The rest of the paper is organized as follows. Related work is discussed in
Section 2. Section 3 discusses the research design, with context, research ques-
tions, and procedures. In Section 4, we present the results, and in Section 5 we
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discuss the main takeaway messages. Threats to validity are presented in Section
6. We conclude the paper and draw future directions in Section 7.

2 Related Work

In software engineering, several approaches rely on similarity measurements
to analyze relationships between different software artifacts. Typical goals in-
clude feature identification [39], feature location [12], architecture recovery [35],
reusable service identification [34] and clone detection [36]. In the RE field, sim-
ilarity computation normally involves using NLP techniques to represent the
requirements [38], as these are typically written in NL [15]. Computation of sim-
ilarity is key for many typical requirements management tasks, including trace-
ability [6, 18, 17], identification of equivalent requirements [13], clustering [3], and
also recommender systems based on Information Retrieval (IR) approaches [2,
9, 14, 28, 8, 27, 11, 19, 32]. As our research is focused on this latter group of ap-
plications, we will compare our work with representative ones in this area. One
of the seminal contributions is the work by Natt och Dag et al. [9], where the
tf-idf language model and cosine similarity are used to support retrieval of pre-
vious requirements on a large industrial dataset. Dumitru et al. [11] propose
an approach for feature recommendation based on online product descriptions,
with the support of association rule mining and kNN clustering. This type of
clustering is also used by Castro-Herrera et al. [8], who proposes to recommend
relevant stakeholders to requirements discussion forums based on their expertise.
The OpenReq EU project [28, 14] aims to take a more holistic perspective, with
recommendations in elicitation, specification, and analysis, and also includes a
proposal for bid management. Similarly to our work, the researchers plan to use
content-based recommender systems for requirements and adopt vector-space
language models to support similarity computation. On a different note, but still
using tf-idf to support similarity computation, Nyamawe et. al. [27] recommend
refactoring based on new feature requests. Finally, in a recent contribution [2], we
used requirements descriptions to recommend the reuse of their implementation
for new requirements.

Compared to our previous work [2], which was dedicated to the whole task
of software reuse, the current investigation is explicitly focusing on exploring the
relationship between requirements similarity and the actual software similarity.
With respect to other related studies, the work presented in this paper is the first
one that, while focusing on requirements and software similarity, compares the
most recent state-of-the-art NLP techniques to support similarity computation
and applies these techniques in an industrial context. This is particularly relevant
also for the whole NLP for the RE field, as the recent survey of Zhao et al. [38]
clearly highlights limited experimentation with advanced NLP techniques in RE
research.
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3 Study Design

This section outlines the research method used to obtain the results. This work
can be regarded as an exploratory case study [33], oriented to understand the
relationship between requirements and their associated code and exploit this
relationship for software retrieval in the specific context of a railway company. We
designed this study following the guidelines of Runeson et al. [33] for conducting
and reporting case studies by providing an overview of the context, our objective,
and research questions, followed by the data collection and analysis procedures.

3.1 Study Context

We have studied the PPC software development team of BT. In this team, the
software is developed by reusing existing components from the assets base [1].
The development of a new product starts after receiving customer require-
ments from different teams at the company. Since the system is a safety-critical
software-intensive system, the requirements for all existing products can be
traced to the source code. The team consists of more than 140 employees, de-
veloping safety-critical products, and thus the requirements have to be dealt
with in detail. Therefore, all the team members participate in the requirements
engineering activities. As shown in Figure 1, requirement analysis and elici-
tation activities are performed on tender documents to extract the customer
requirements. The customer requirements relevant to the propulsion system are
received by this team. The input requirements (PPC reqs.) are internalized by
reusing standard internal domain requirements and existing requirements from
other projects. This results in project-specific internal requirements to be imple-
mented.

To support reuse, the engineers also conduct reuse analysis to identify exist-
ing similar customer requirements and, by exploiting traceability information,
identify existing software components that could be reused to realize the new
requirements. However, this process is heavily dependent on the experience of
engineers and is time-consuming. Currently, the process is being automated with
a recommender system called VARA [2]. Like most RE recommender systems,
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VARA is also based on the assumption that similar requirements can be used as
proxies to retrieve similar software.

3.2 Objective and Research Questions

Our main goal is to improve the software retrieval process in the studied setting.
To this end, we need first to check the typical assumption of content-based
recommender systems for requirements, i.e., that similar requirements can be
used as proxies to retrieve similar software. In other terms, we want to check
if a relationship can be identified between requirements similarity and software
similarity so that similar requirements can be assumed to point to similar code.
Then, we want to check which NLP approach performs best in exploiting this
similarity. To achieve these objectives, we define the following research question.

RQ: To which extent can we use requirements similarity, automatically com-
puted through different language models, as a proxy for software similarity?

This research question aims at exploring the relationship between require-
ments similarity and software similarity. Language models are commonly used
to compute the similarity among requirements. Therefore, this research question
also aims to identify the most effective language model in our specific case for
computing requirements similarity that correlates well with the software simi-
larity and can be better exploited in the given setting.

The case under study is the relationship between requirement similarity and
software similarity in the considered industrial setup. The unit under analysis
in our case are the projects developed in the Power Propulsion Control software
at Bombardier Transportation.

3.3 Data collection

We collected data from two projects at Bombardier Transportation AB, devel-
oped by the Power Propulsion Control software team. Due to limited access to
the company’s repository, the projects were selected based on convenience by
a company’s project manager. The requirement documents were subjected to
cleaning to remove all non-requirements such as headings and definitions. This
resulted in a final set of 254, selected out of 265 entries. In data collection, one
project manager from the company was involved in validating our procedure.
Table 1 outlines the data about two projects with information on requirements
and lines of code.

We conducted the investigation for our dataset, both with and without stop-
words. This is because some language models can utilize stop-words, suffix, and
prefix information for learning. We use a pre-processing pipeline to remove all the
English stop-words and lemmatize the words of the requirements to their roots.
An example requirement from the PURE dataset before and after pre-processing
is shown as follows [16].
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Table 1: Summary of the selected requirements with and without stop-words
Project Reqs. With Without SLOC

- - Words AVG. Words Words AVG. Words -

A 112 5823 51.9 3308 29.5 53.7K

B 142 10736 75.6 6478 45.6 61K

Total 254 16559 63.7 9786 37.5 114.7K

Before Pre-Processing: The number of block movement in incremented
of 1. The difference of time of the block movement and the previous recorded
time is recorded.
After Pre-Processing: number block movement incremente 1 difference
time block movement previous record time record

In the studied projects, the requirements are realized in Simulink models, and
code is generated from the models for deployment. Besides, there are not many
available tools for computing similarity between Simulink models. Therefore, to
mimic the studied setting, we used Simulink Embedded Coder5 with MinGW64
gmake tool-chain to generate code from the models. The related code realizing
each requirement was traced and moved to directories tagged with the require-
ment’s identifiers.

3.4 Language Models for Requirements Similarity

Language models are used to derive feature vectors from the requirements’ text.
Various similarity metrics are used on the vectors to compute similarity among
them. The cosine similarity metric is based on the cosine angle between the
vectors and is heavily used in the area of NLP. The effectiveness of the similarity
computed with cosine is heavily dependent on the choice of language model used
for computing feature vectors. In addition, some language models are sensitive
to pre-processing, such as removal of stop-words and lemmatization. This is
why we selected some of the most seminal language models and fed them the
dataset with and without pre-processing applied. Particularly, we considered tf-
idf (TF), Doc2Vec (DW), FastText (FT), and BERT. In addition, to see the
effect of pre-processing, we combined these language models with pre-processing
(pTF, pDW, pFT, and pBERT). Note that for DW, FT, and BERT, the hyper-
parameters are not in our control and are coming from the original pre-trained
models. In our case, the input to each language model is the requirements from
two projects, and the output is vectors of requirements. Given the total number
of requirements, we select the top 50 similar pairs of requirements using cosine
similarity to fulfill the sample size requirement. A pair is created by retrieving
the most similar requirement from project B for each requirement in project
A. The similarity between each pair of requirements’ vectors is calculated using

5 The option “optimize for traceability” was selected in Embedded Coder.
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the cosine similarity metric implementation available in scipy [31]. In this sub-
section, we first present the pre-process pipeline, then the different language
models used to generate vectors to compute the similarity between requirement
pairs.

Pre-Process. The pre-process pipeline takes the requirements text and re-
moves English stop-words from it. After the removal of the stop-words, each to-
ken of the requirements text is tagged with Part-of-speech (POS) tags to guide
the lemmatization. The pre-trained spaCy model6 is used to lemmatize the text
of the requirement. The output of this pipeline is the pre-processed text of the
requirement. The dataset before and after pre-processing is shown in Table 1. In
the remainder of this section, the names of language models starting with “p”
are the model variants where pre-processing is applied.

TF is based on the tf-idf score from IR. TF extracts term-matrix from the
input requirements where the terms are treated as features, and the frequencies
are treated as values of the features. Minimum and maximum term frequencies
can be defined to drop irrelevant features such as potential stop-words. The
matrix also considers the co-occurring terms (n-grams) as features. The term
matrix is usually of very high dimensions, and thus dimensionality reduction
techniques are used to select the top features from the matrix. Such an approach
is useful in cases where the requirements share common terms. In our case, the
model is configured to build the term-document matrix on project B and then
uses Principal Component Analysis (PCA) [21] to select the top features based
on the explained variance of 95%from the matrix. The minimum and maximum
document frequencies are set to 6 and 0.5, respectively. We consider n-grams
ranging from 1 to 8.

DW is based on the Word2Vec approach, where every word in a document
is mapped to a vector of real numbers using a neural network. The vectors are
concatenated to get vectors for the entire document, preserving the contextual
and semantic information For example, words like “simple” and ‘easy” would
result in similar vectors. This helps in inferring feature vectors of fixed-length
for a variable length of requirements. In our case, the pre-trained Doc2Vec model
available in Gensim data7 is used. The model has a vector size of 300, with a
minimum frequency set to 2. The model is trained on the English Wikipedia
documents resulting in a vocabulary size of 35,556,952.

FT is another model based on Word2Vec, where instead of learning word
vectors directly, it utilizes the character level n-grams. For example, the word
“run” would be divided into n-grams such as “ru,” “run,” “un”. Such a model is
useful in cases where shorter words are used. In addition, FastText also under-
stands suffixes (such as verb ending) and prefixes (such as unhappy, where un is
the prefix) better because it utilizes character-level information. In our case, we
use the pre-trained FT model available in Gensim data. The model has a vector
size of 100 with a minimum frequency set to 1. The model is trained on the
English Wikipedia documents on the sub-word-level, resulting in a vocabulary

6 https://spacy.io/
7 https://github.com/RaRe-Technologies/gensim-data
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Fig. 2: Execution procedure overview

size of 2,519,370. Both FT and DW are based on the skip-gram neural network
architecture [26], known for contextual word prediction.

BERT is a recent breakthrough in language understanding research. It is
a bi-directional model based on the Transformer encoder architecture that also
considers positional and contextual information of words. BERT is known for the
so-called contextual embedding and is trained on BooksCorpus and the English
Wikipedia with 2,500M words. Such a model could be handy for capturing the
semantic of the requirements. In our case, we use the uncased pre-trained BERT
model by Google Research [10]. The model has 12 layers and a vector size of
768. We use the BERT implementation available in BERT-as-a-service8.

3.5 Software Similarity Pipeline

Our software similarity pipeline takes pairs of requirement’s identifiers as input.
It copies each pair’s code to separate folders 9. The pipeline then uses JPLag
to compute the similarity between the pair of source code. To compute the
similarity between the source code of the two requirements, we use the JPLag’s
Java ARchive (JAR) with C/C++ as a language parameter [30]. JPLag was
originally designed to detect plagiarism in students’ assignments and thus is able
to detect semantically similar code. Note that JPLag ignores code comments and
white-spaces and scans and parses the input programs to convert the programs
into string tokens. JPLag then uses a greedy version of string tiling algorithm
to compute the similarity between the tokens of the source code. The similarity
number is basically the percentage of similar tokens in the pairs of source code.
The output of this pipeline is the software similarity values between 0 and 100,
later converted to range between 0 and 1 for the input pairs.

3.6 Execution

Figure 2 shows a high-level view of the execution procedure followed to obtain the
results. We started with two requirement documents as input to all the language

8 Xiao Han, https://github.com/hanxiao/bert-as-service
9 In our case, each folder for a pair contains two sub-folders with code of each require-

ment.
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Fig. 3: Software similarity distribution in the top 50 similar requirement pairs

models presented in Section 3.4. Each language model outputs vectors of the
requirements that are used to select the 50 most similar pairs of requirements
based on cosine similarity. For each model, the Pairs Selector searches, selects
and structures the code of the requirements for JPLag. The pipeline then uses
JPLag to compute the similarity between each input pair of the source code and
produces the software similarity values for each language models’ result.

3.7 Data Analysis

First, we visualize the data in bar and scatter plots to provide descriptive statis-
tics on the software similarity percentages among the identified pairs by using
each language model. Then, we apply the correlation analysis to quantify the
relationship between the two variables using R Studio 10. As our data are not
normally distributed and we do not assume any linear correlation between the
variables, we use Spearman’s rank correlation coefficient test.

4 Results

In this section, we quantitatively answer our posed research question. First, we
present the descriptive statistics, and then we present the correlation analysis.

Descriptive Statistics. To understand the results, we divided the similar pairs
of the requirements—computed based on different language models—against the
actual software similarity into three classes. The first class represents the cases
where the retrieved software shares less similarity (< 60% software similarity, A).
The second class represents cases where the retrieved software share moderate
similarity (between 60 and 80% between the software of the pairs, B), finally,
third class represent cases where the retrieved software shares high similarity

10 RStudio, Available online, https://rstudio.com/
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Fig. 4: Scatter plots of the requirements and software similarity

(> 80% similarity between the software of the pairs, C). The above classes are
defined to show the extent to which requirements similarity can be used to
recommend requirements-based code reuse. Figure 3 shows the distribution of
software similarity among the top 50 similar pairs of requirements based on each
language model. As it can be seen, in all cases, in at-least 60 percent of the pairs,
the software similarity stays above 80 percent (in class C).

In addition, Figure 4 presents a holistic view of the association between the
requirements similarity and software similarity. The requirements similarity (on
X-Axis) is calculated using different language models. The software similarity
is plotted on Y-Axis and is calculated using our JPLag-based pipeline, shown
in Figure 2. The blue line is the trendline between the two variables, giving
insights into the relationship between them. In all cases, as can be seen from
the trendlines, there could be a positive association between the two variables.
Besides, we also visualize the interquartile range (IQR), mean, and outliers in
our variables in Figure 5. As can be seen from Figure 5, the software similarity
for most requirement pairs stays above 70%.

Correlation Analysis. We applied correlation analysis to quantify the rela-
tionship and find the most suitable approach toward requirements similarity
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Table 2: Spearman’s rank Correlation Results with Moderate correlation in bold
text. The best pipeline (pTF) is also reported in bold.

TF pTF DW pDW FT pFT BERT pBERT

rho 0.5089 0.5927 0.2642 0.3104 0.5718 0.4676 0.3865 0.5575

p-value 0.0001 5.753e-06 0.0636 0.0282 1.439e-05 0.0006 0.0055 2.594e-05

computation. We measure the correlation between the similarity of the top 50
most similar pairs of the requirements and their source code similarity. We choose
the top 50 pairs because it is a suitable number for a sample size (for applying
statistical tests) and, at the same time, not a large number of pairs compared
to the total requirements.

Table 2 show the results of Spearman’s rank correlation. The p-value indi-
cates the significance of the obtained results. The rho column is the correlation
coefficient, which ranges from -1 to 1. As it can be observed, there is a positive
association between the requirements similarity and software similarity for all
the language models.

5 Discussion

From the results shown in Figure 3, it can be seen that even in worst cases,
the requirements-based code retrieval would result in retrieving code with a
high software similarity (that is more than 80%), which can be therefore a good
candidate for reuse. Based on the descriptive statistics, we can make the following
conclusion.
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Requirement-level similarity can be used as proxy for retrieving relevant
software (sharing at-least 80% software similarity) for reuse in at-least 60%
of the cases.

In addition, the trendlines in Figure 4 also shows that the results from all the
language models could have a positive association with software similarity. How-
ever, in some cases these language models can produce inaccurate results. As
it can be seen in Figure 5, there are some outliers in the retrieved software.
Besides it can also be seen from Figure 5, the variance in the software similarity
across the pairs is high in case of FT and BERT, suggesting that these models
tend to capture more nuanced semantic similarities in requirements, which may
point to more fine-grained variations of the software. For these language models,
the minimum software similarity can also be quite low, therefore indicating that
the nuanced similarities in requirements can also lead to software that cannot
be easily reused. These more semantically-laden representation may be more
appropriate for tasks other than code retrieval, such as, e.g., requirements-to-
requirements tracing, where dependencies tend to go far beyond lexical aspects.
Figure 5 also shows that similarity ranges largely vary between language models
(e.g., BERT and DW have very limited range with respect to the others). This
suggests that having a code-retrieval system that is based on thresholds over the
similarity values (e.g, consider software with requirements similarity higher than
75%) may not be the most appropriate solution.

The correlation analysis (presented in Table 2) shows that for all language
models, we were able to find a positive correlation between requirements similar-
ity and software similarity. In particular, there is a moderate positive correlation
between the requirements similarity computed with tf-idf, FastText and BERT
(shown in bold text in Table 2). Results also show that pre-processing improves
the correlation for all language models except FastText.

Our results indicate that term-frequency inverse document frequency (tf-
idf)-based language model with pre-processing shows a moderately positive
correlation (with rho of 5.92) to software similarity.

Surprisingly, the decades-old tf-idf performs better than the new state-of-the-
art language models. This can be explained by the limited vocabulary and high
similarity of terms used in the requirements of the two projects, as typical in the
RE domain [16], where synonyms are not recommended, and company practices
encourage uniform terminology. In tasks where requirements might be sharing
fewer terms—e.g., in case of comparison between high-level customer require-
ments and low-level specifications—, the benefit of language models capturing
semantics, such as BERT, could be more evident. The worst performance is ob-
tained with Doc2Vec. This language model works well with long documents and
might not be a good candidate for RE tasks, as single requirements are typi-
cally short, but maybe beneficial in contexts where the comparison is performed
between entire requirements documents.



Is Requirements Similarity a Good Proxy for Software Similarity? 13

It is worth remarking that our final objective is to improve requirements-
based software reuse. At this stage, our results can be used to build recommender
systems that use requirements similarity to retrieve candidate software for reuse.
The actual in-field assessment of the quality of the retrieval—or, in other terms,
the answer to the question: does the retrieved software satisfy my requirement?—
will need to be addressed with the involvement of human operators.

6 Threats to Validity

In this section, we present validity threats according to Runeson et al. [33].
We based the problem of software retrieval for reuse at the requirements-

level and provided empirical evidence on the association between requirements
similarity and software similarity. In our procedure, we used pre-trained models
that are heavily dependent on the quality of the training dataset. The quality of
the results might differ if different pre-trained language models are considered.
To mitigate potential threats to construct validity, we selected a diverse set of
approaches (see Section 3.4) to represent the semantics of the requirements. We
did not consider similarity as assessed by human subjects, as our goal is to use
language models for automatic similarity computation. However, different results
may emerge if human subjects are involved in the assessment.

To mitigate potential internal validity threats, we followed standard proce-
dure and open source implementations. In addition, we also involved researchers
from diverse backgrounds to validate the study design and execution. Finally,
we also involved a technical project manager at the company in validating our
data collection procedure.

Our results are based on data provided by one company using a data set of
two projects developed by a team. We do not claim the generalizability of our
results beyond this context. In addition, our results are only limited to one level
of abstraction since we do not consider multiple levels of requirement refinement.
Considering guidelines for case-based generalization [37], these results might be
applicable to similar contexts, where similar RE practices are followed. Further
studies are needed on other abstraction levels of requirements and in different
companies and domains to generalize the results.

Finally, we address the threats to the reliability of our results by providing
enough details on the experimental setup and implementation. In addition, we
also provide the R script and the similarity values between the pairs for replica-
tion purposes11.

7 Conclusion and Future Work

Content-based recommender systems for code retrieval typically use require-
ments as queries to identify previously developed requirements, and in turn,
reuse their implementation. These systems take the operational assumption that

11 Replication package, https://doi.org/10.5281/zenodo.4275388
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similar requirements can be used as proxies to retrieve similar code that can be
reused with limited adaptation. This paper presents an empirical investigation
on the relationship between requirements similarity and code similarity in the
context of a railway company. The goal of the work is to explore to which extent
similar requirements can be considered as a proxy to retrieve similar code. We
consider two related projects in the company. We use different NLP-based lan-
guage models to represent the requirements and support similarity computation.
Given similar requirements, we identify the associated code, and we compute
code similarity with JPLag. Our analysis shows that the correlation between
requirements and code similarity is moderately positive, even in the best case.
So, a relationship exists between the two, but there is also a need for further
research on language models and similarity measurement approaches that can
better reflect software similarity. In our specific case, the language model that
reflects software similarity better is the traditional tf-idf.

Future work will consider a broader set of possible application scenarios of
recommender systems for code reuse. Avenues that we plan to explore include:
(1) considering the original tender requirements, and identify the relationship
with existing requirements and associated software, to support early evalua-
tion during bid proposal (2) considering feature or refactoring requests as input
queries, to support change impact analysis [4, 7] (3) consider other companies
and domains other than railways to increase external validity of the results (4)
involve domain experts in the assessment of similarity measurements, as well as
in the empirical evaluation of requirements-based software retrieval for reuse (5)
identify when a specific language model is more appropriate to compute similar-
ity, given the types of relationship between the format of the queries accepted by
the recommender system, the characteristics of the requirements (e.g., high- vs
low-level, functional vs quality), and the type of activity that is expected to be
performed with the retrieved software, which can be reused, but also correct, re-
move, end even validate. Indeed, similarity measures and code retrieval can also
be exploited to identify incorrectly traced software or missing trace links [17, 18],
as well as potentially tacit requirements that are implemented in the software
but are not specified.
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