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Abstract

The clone-and-own approach becomes a common practice to quickly develop Software Product Variants (SPVs) that
meet variability in user requirements. However, managing the reuse and maintenance of the cloned codes is a very hard
task. Therefore, we aim to analyze SPVs to identify cloned codes and package them using a modern systematic reuse
approach like Service-Oriented Architecture (SOA). The objective is to benefit from all the advantages of SOA when
creating new SPVs. The development based on services in SOA supports the software reuse and maintenance better
than the development based on individual classes in monolithic object-oriented software. Existing service identification
approaches identify services based on the analysis of a single software product. These approaches are not able to analyze
multiple SPVs to identify reusable services of cloned codes. Identifying services by analyzing several SPVs allows to
increase the reusability of identified services. In this paper, we propose ReSIde (Reusable Service Identification): an
automated approach that identifies reusable services from a set of object-oriented SPVs. This is based on analyzing the
commonality and the variability between SPVs to identify the implementation of reusable functionalities corresponding
to cloned codes that can be packaged as reusable services. To validate ReSIde, we have applied it on three product
families of different sizes. The results show that the services identified based on the analysis of multiple product variants
using ReSIde are more reusable than services identified based on the analysis of singular ones.

Keywords: software reuse, service-oriented reengineering, reverse engineering, variability, software families,
object-oriented source code

1. Introduction1

It is a common practice that software developers rely on2

the clone-and-own approach to deal with custom-tailored3

software [1, 2]. New software products are developed by4

copying and modifying codes corresponding to functionali-5

ties from existing software to meet the requirement of new6

needs of new customers. The resulting software products7

are considered Software Product Variants (SPVs) because8

they share features and differ in terms of others [1]. The9

existence of this phenomenon has been proved by empirical10

studies like [2] [3].11

For monolithic object-oriented SPVs, managing the soft-12

ware reuse and maintenance of the cloned codes is a very13

hard task [4]. For reuse, e.g., it is hard to identify reusable14

codes from the monolithic object-oriented implementation15

of these SPVs [5]. For maintenance, e.g., it is difficult to16

propagate updates for fixing bugs related to the implemen-17

tation of the cloned codes. Therefore, we are interested in18
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analyzing SPVs to identify cloned codes and package them19

using a modern systematic reuse approach like Service-20

Oriented Architecture (SOA). The objective is to benefit21

from all the advantages of SOA when creating new SPVs.22

With SOA, SPVs are defined in terms of flexible archi-23

tectures composed of a set of independent coarse-grained24

services that implement reusable functionalities across sev-25

eral SPVs, and clearly define their external dependencies26

in an explicit way through their provided and required in-27

terfaces.28

One of the most important steps for reengineering mono-29

lithic object-oriented SPVs to SOAs is the identification of30

reusable services corresponding to cloned codes of reusable31

functionalities across several SPVs. Moreover, the identi-32

fication of reusable services is an efficient way to supply33

service-based libraries.34

Existing service identification approaches identify ser-35

vices based on the analysis of a single software product36

[6, 7, 8, 9]. These existing approaches partition the object-37

oriented implementation to disjoint groups of classes where38

each group is the implementation of a potential service. As39

these approaches only analyze single products, the identi-40

fied services may be useless in other software products and41

consequently their reusability is not guaranteed. In addi-42

tion, these approaches are not able to analyze multiple43
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SPVs to identify reusable services related to cloned func-44

tionalities and their related codes. In fact the probabil-45

ity of reusing a service in a new software product is pro-46

portional to the number of software products that have47

already used it [10, 11]. Thus, mining software services48

based on the analysis of a set of SPVs contributes to iden-49

tify reusable services. Nonetheless, this has not been inves-50

tigated in the literature. Identifying services by analyzing51

multiple SPVs makes it possible to improve the reusability52

of services to reduce the effort when developing new soft-53

ware products (by reuse) and to reduce the maintenance54

effort by making it possible to propagate any change to a55

service across all of the products that reuse this service.56

In this paper, we propose ReSIde (Reusable Service57

Identification): an automated approach that identifies reusable58

services from a set of similar object-oriented SPVs. ReSIde59

analyzes the commonality and the variability between the60

object-oriented source code of multiple SPVs to identify61

the implementation of reusable functionalities correspond-62

ing to cloned codes. These identified functionalities are63

intended to be packaged as reusable services that can be64

reused across multiple products. ReSIde is motivated by65

the fact that services identified based on the analysis of66

several existing SPVs will be more useful (reusable) for67

the development of new SPVs than services identified from68

singular ones.69

To validate ReSIde, we have applied it on three open-70

source product families of different sizes (i.e., small, medium71

and large-scale ones). We propose an empirical measure-72

ment to evaluate the reusability of the identified services.73

According to this measurement, the results show that the74

reusability of the identified services using ReSIde is bet-75

ter than the reusability of those identified from singular76

software.77

The idea of analyzing multiple SPVs to identify reusable78

components was introduced in our conference paper [12].79

In relationship with this conference paper, this journal pa-80

per addresses the identification of services and not software81

components. Also, it includes additional contents in terms82

of:83

1. Proposition of a deep analysis of the problem of iden-84

tifying reusable services from multiple SPVs.85

2. Proposition of more details and deep analysis of the86

proposed solution, e.g., by giving more details about87

used algorithms and illustrating the solution based88

on new examples and figures.89

3. Adding a new case study that is Health Watcher and90

consequently extending the evaluation.91

4. Presentation of new detailed results and new analysis92

of their relevance.93

5. Adding threats to validity discussions.94

6. Important extension of related work analysis and95

classification.96

7. The analysis of the research and practical implica-97

tions of the obtained results.98

The rest of this paper is organized as follows. Section 299

presents a background needed to understand our approach.100

In Section 3, we provide the foundations of ReSIde. Sec-101

tion 4.1 discusses how ReSIde identifies potential services102

from each SPV. In Section 4.2, we present the identifica-103

tion of similar services between different SPVs. Reusable104

services are recovered from the similar ones in Section 4.3.105

Section 4.4 presents how ReSIde structures the service in-106

terfaces. The evaluation results are discussed in Section 5107

and Section 6. In Section 7, we present the related works108

to our approach. A conclusion of this paper is presented109

in Section 8.110

2. Background: service quality model111

Figure 1: Service quality model

In this section, we discuss the service quality model112

proposed in our previous work [6] and which is reused in113

this paper to evaluate the quality of a cluster of classes to114

form a quality-centric service based on the structural de-115

pendencies between these classes. From the service struc-116

ture point of view, any group of classes can form a service.117

Therefore, we need a measurement to distinguish good ser-118

vices from bad ones. To do so, we use this quality fitness119

function to identify only groups of classes that could form120

high quality services.121

To define this service quality model, we studied the122

existing definition of services in the literature and identi-123

fied three quality characteristics that should be measured124

to evaluate the quality of a group of classes to form a125

quality-centric service. These characteristics are: (i) the126

coarse-grained of functionalities implemented by the clus-127

ter of classes, (ii) the composability of the cluster of classes128

to be reused through their interfaces without any modifi-129
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cation, and (iii) the self-containment of the the cluster of130

classes.131

As presented in Figure 1, we perform similar to the132

ISO9126 quality model [13] to refine these three charac-133

teristics to a number of service properties that can be134

measured using a number of object-oriented metrics (e.g.,135

self-containment is refined to the number of required in-136

terfaces by a given service).137

The service quality model identifies service character-138

istics and refine them as metrics. However, to identify ser-139

vices, we need to put these metrics as function that can be140

computed to output a numerical value for evaluating the141

semantic of a service (i.e. what a service is) based on its142

implementation composed of a cluster of object-oriented143

classes. Therefore, we defined a quality fitness function144

(QFF) based on our service quality model where its input145

is a cluster of classes (E), and its output is a value, situ-146

ated in [0–1], corresponding to the quality of this cluster of147

classes to form a quality-centric service. This QFF is rep-148

resented by Equation 1 based on the linear combination149

of the three quality characteristics: Functionality (Fun),150

Composability (Comp) and Self-Containment (SelfCon).151

QFF (E) =
1

3∑
i=1

λi

· (λ1 · Fun(E) + λ2 · Comp(E)+ λ3·152

SelfCont(E)) (1)153

Where λi are parameters used by the practitioners to154

weight each characteristic.155

The Functionality (Fun), the Composability (Comp)156

and the Self-Containment (SelfCon) of a group of classes157

(E) are measured based on Equation 2, Equation 3 and158

Equation 4 respectively.159

Fun(E) =
1

5
· (np(E) +

1

I

∑
i∈I

LCC(i) +160

LCC(I) + Coupl(E) + LCC(E)) (2)161

Comp(E) =
1

I

∑
i∈I

LCC(i) (3)162

SelfCont(E) = ExtCoupl(E) (4)163

Where np(E) is the number of provided interfaces based164

on the number of public methods in E. LCC(i) (Loose165

Class Cohesion) [14] is the average of the cohesion of a166

group of methods composing the service interfaces. These167

methods are the public methods implemented in the iden-168

tified classes of the service. LCC(i) is calculated based on169

the percentage between the number of links among these170

methods and the total number of possible links among171

these methods. LCC(I) is the cohesion between inter-172

faces. LCC(E) is the cohesion inside a service. Coupl(E)173

(Coupling) measures the level of connectivity (e.g., method174

calls, attribute accesses) of a group of classes with the175

reaming classes of the software. ExtCoupl (External Cou-176

pling) measures the coupling of a given potential service177

with other services (1 - Coupl).178

In this paper, we use this quality fitness function as179

a black box component. It worths to note that it can be180

replaced by any service quality fitness function following181

the needs of the software engineers. Please refer to [6] for182

more details regarding the service quality model and its183

quality fitness function.184

3. ReSIde foundations185

3.1. Illustrative example186

We present in Figure 2 an illustrative example to easy187

understand the foundations of our approach. We have 2188

SPVs that are developed based on the clone-and-own ap-189

proach.190

SPV1 includes 5 classes that implement functionalities191

related to the photo management. SPV2 cloned SPV1 and192

extends it based on 10 additional classes. These classes193

aim to improve existing functionalities and to add other194

functionalities related to the music management.195

Our goal is to identify reusable services based on the anal-196

ysis of source codes respectively of theses two SPVs.197

Figure 2: Illustrative example of two SPVs

3.2. ReSIde principles198

ReSIde aims to identify reusable services based on the199

analysis of the object-oriented source code of similar SPVs.200

To identify services from the source code of object-oriented201

software, we propose an object-to-service mapping model202

that maps the object-oriented elements (classes and meth-203

ods) to SOA ones (services and interfaces). We present204

this mapping model in Figure 3. We define a service in205

terms of a cluster of object-oriented classes. A service206

implements a set of functionalities provided using its in-207

terfaces. Each interface is defined in terms of a set of208

object-oriented methods implemented in the classes of the209

service. The provided interfaces of a service are defined210

as a group of methods implemented by classes composing211

the service and accessed by classes of other services. The212

required interfaces of a service are defined as a group of213
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methods invoked by classes of the service and implemented214

in the classes of other services.215

To identify a cluster of classes frequently appear to-216

gether in several SPVs to implement the same functionali-217

ties, we rely on two types of dependencies: the co-existence218

together and the structural object-oriented dependencies.219

The co-existence together dependencies measure how much220

a cluster of classes are reused together in the same subset221

of SPVs. These are used to guarantee that the resulting222

services are reusable across different SPVs. The structural223

object-oriented dependencies evaluate the quality of a clus-224

ter of classes to form a quality-centric service based on the225

service quality model proposed in our previous work (c.f.226

Section 2). These are used to guarantee that we produce227

quality-centric services.228

Figure 3: Object-to-service mapping model

We summarize the principles of ReSIde as follows.229

• ReSIde defines a service in terms of a cluster of object-230

oriented classes. E.g., the PhotoAlbum service could231

be formed based on the PhotoAlbum, AddPhotoToAl-232

bum, AlbumManager and DeletePhotoFromAlbum classes.233

• A reusable service is the one identified in several234

SPVs. E.g., the PhotoAlbum service is identified235

in the two SPVs in our illustrative example.236

• Co-existence together dependency between classes is237

used to identify reusable services already reused in238

several SPVs. E,g., the PhotoAlbum and AddPhoto-239

ToAlbum co-exist together in the two SPVs.240

• Object-oriented dependency between classes is used241

to identify quality-centric services. E.g., the Pho-242

toAlbum and AddPhotoToAlbum are cohisive based243

on their method calls and attribute accesses.244

• ReSIde analyzes the commonality and the variability245

between SPVs to identify reusable services.246

• Classes composing a reusable service should imple-247

ment one or more coarse-grained functionalities in248

several SPVs. E.g., the PhotoAlbum, AddPhotoToAl-249

bum and DeletePhotoFromAlbum classes implement250

the cohesive PhotoAlbum service.251

• A class can belong to many services since this class252

could contribute to implement different functionali-253

ties by participating with different groups of classes.254

E.g., the AlbumManager class is a part of the Pho-255

toAlbum service (AlbumManager, PhotoAlbum, Ad-256

dPhotoToAlbum, DeletePhotoFromAlbum) and the257

MusicAlbum service (AlbumManager, MusicAlbum,258

AddMusicToAlbum, DeleteMusicFromAlbum).259

• A provided interface of a service is a group of meth-260

ods that are accessed by classes composing other ser-261

vices.262

• A required interface of a service is a set of methods263

used by classes composing this service and belonging264

to other services’ classes.265

3.3. ReSIde process266

Based on what we mentioned before, we propose a pro-267

cess presented in Figure 4 to identify reusable services from268

a set of SPVs. This process consists of four main steps.269

1. Identification of potential services in each SPV.270

We analyze each SPV independently to identify all271

potential services composing each SPV. To identify272

quality-centric potential services, we rely on object-273

oriented dependencies between classes to evaluate274

their quality. We consider that any set of classes275

could form a potential service if and only if it has an276

accepted value following the quality fitness function277

of the quality model presented in Section 2.278

In our illustrative example, we identify the 5 clus-279

ters of classes corresponding to potential services in280

SVP1.281

282

(a) PhotoAlbum, AddPhotoToAlbum.283

(b) PhotoAlbum, AddPhotoToAlbum, PhotoView.284

(c) PhotoListScreen, PhotoViewScreen.285

(d) PhotoListScreen, PhotoViewScreen, PhotoView.286

(e) PhotoViewScreen, PhotoView.287

These clusters of classes are obtained based on the288

strength of the structural dependencies among the289

classes.290

2. Identification of similar services between dif-291

ferent SPVs. Due to the similarity between the292

SPVs, their identified potential services could pro-293

vide similar functionalities. Similar services are those294

providing mostly the same functionalities and differ295

compared to few others. Thus, we identify similar296

services from all potential ones identified from differ-297

ent SPVs. To this end, we cluster the services into298

groups based on the lexical similarity among classes299
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Figure 4: The process of reusable services identification from multiple SPVs

composing the services based on the cosine similarity300

metric [15].301

Considering our illustrative, we identify the clus-302

ter of [PhotoAlbum, AddPhotoToAlbum, PhotoView ]303

in SPV1 as similar to the cluster of [AlbumMan-304

ager, PhotoAlbum, AddPhotoToAlbum, PhotoView ]305

in SPV2.306

3. Identification of one reusable service from sim-307

ilar potential services. Similar services identified308

from different SPVs are considered as variants of one309

service because they provide mostly the same func-310

tionalities. Therefore, from a cluster of similar ser-311

vices, we identify one common service that is rep-312

resentative of this cluster of similar services and it313

is considered as the most reusable one compared to314

the members of the analyzed cluster. We rely on the315

co-existence together dependencies and the structural316

object-oriented dependencies to identify the classes317

composing this common service. The co-existence to-318

gether dependencies are identified based on the per-319

centage of services containing the classes. The struc-320

tural object-oriented dependencies are based on the321

quality fitness function of the quality model pre-322

sented in Section 2.323

For example, we identify the group of [PhotoAlbum,324

AddPhotoToAlbum, PhotoView ] as implementation325

of the resuable service from the similar clusters of326

[PhotoAlbum, AddPhotoToAlbum, PhotoView ] in SPV1327

and [AlbumManager, PhotoAlbum, AddPhotoToAl-328

bum, PhotoView ] in SPV2.329

4. Identification of object-oriented methods cor-330

responding to service interfaces. Only classes331

constituting the internal structures, i.e., the imple-332

mentation, of the reusable services are identified in333

the previous steps. However a service is used based334

on its provided and required interfaces. Thus, we335

structure service interfaces, required and provided336

ones, based on the analysis of the dependencies (e.g.,337

method calls, attribute accesses) between services in338

order to identify how they interact with each others.339

4. ReSIde in depth340

4.1. Identification of potential services in each software341

product variant342

We view a potential service as a cluster of object-oriented343

classes, where the corresponding value of the quality fit-344

ness function is satisfactory (i.e., its quality value is higher345

than a predefined quality threshold). Thus, our analysis346

consists of extracting any set of object-oriented classes that347

can be formed as a potential service. Such that the over-348

lapping between the services is allowed.349
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4.1.1. Method to identify potential services350

Identifying all potential services needs to investigate all351

subsets of classes that can be formulated from the source352

code. Then, the ones that maximize the quality fitness353

function are selected. Nevertheless, this is considered as354

NP-hard problem as the computation of all subsets re-355

quires an exponential time complexity (O(2n)). To this356

end, we propose a heuristic-based technique that aim to357

extract services that are good enough ones compared to the358

optimal potential services. We consider that classes com-359

posing a potential service are gradually identified start-360

ing from a core class that participates with other classes361

to contribute functionalities. Thus, each class of the ana-362

lyzed SPV can be selected to be a core one. Classes having363

either direct or indirect link with it are candidates to be364

added to the corresponding service.365

4.1.2. Algorithm to identify potential services366

Algorithm 1 illustrates the process of identifying po-367

tential services. In this algorithm, Q refers to the qual-368

ity fitness function and Q threshold is a predefined quality369

threshold. The selection of a class to be added at each step370

is decided based on the quality fitness function value ob-371

tained from the formed service. Classes are ranked based372

on the obtained value of the quality fitness function when373

it is gathered to the current group composing the service.374

The class obtaining the highest quality value is selected to375

extend the current group (c.f. lines 7 and 8). We do this376

until all candidate classes are grouped into the service (c.f.377

lines 6 to 11). The quality of the formed groups is evalu-378

ated at each step, i.e., each time when a new class is added.379

We select the peak quality value to decide which classes380

form the service (c.f. lines 10 and 11). This means that381

we exclude classes added after the quality fitness function382

reaches the peak value since they minimize the quality of383

the identified service. For example, in Figure 5, the 7th384

and the 8th added classes are putted aside from the group385

of classes related to service 2 because when they have been386

added the quality of the service is decreased compared to387

the peak value. Thus, classes retained in the group are388

those maximizing the quality of the formed service. Af-389

ter identifying all potential services of such a SPV, the390

only ones retained are services that their quality values391

are higher than a quality threshold that is defined by soft-392

ware architects (c.f. lines 12 and 13). For example, in393

Figure 5, suppose that the predefined quality threshold394

value is 70%. Thus, Service 1 does not reach the required395

threshold. Therefore, it should not be retained as a po-396

tential service. This means that the starting core class is397

not suitable to form a service.398

4.2. Identification of similar services between different soft-399

ware product variants400

We define similar services as a set of services providing401

mostly the same functionalities and differing in few ones.402

These can be considered as variants of the same service.403

Input: Object-Oriented Source Code(OO)
Output: A Set of Potential Services(PS)

1 classes = extractInformation(OO);
2 for each c in classes do
3 service = c;
4 candidateClasses =

classes.getConnectedClasses(c);
5 bestService = service;
6 while (|candidateClasses| >= 1) do
7 c1 = getNearestClass(service,

candidateClasses);
8 service = service + c1;
9 candidateClasses = candidateClasses - c1;

10 if Q(service)) > Q(bestService) then
11 bestService = service;

end

end
12 if Q(bestService) > Q threshold then
13 PS = PS + bestService;

end

end
14 return PS

Algorithm 1: Identifying Potential Services

4.2.1. Method to identify similar services404

SPVs are usually developed using the clone and own405

technique. Thus, we consider that classes having simi-406

lar names implement almost the same functionalities. Al-407

though some of the composed methods are overridden,408

added or deleted, the main functionalities are still the same409

ones from the architectural point of view. Therefore, the410

similarity as well as the difference between services are411

calculated based on the object-oriented classes composing412

these services. Thus, similar services are those sharing the413

majority of their classes and differing considering the other414

ones.415

Groups of similar services are built based on a lexical416

similarity metric. Thus, services are identified as simi-417

lar compared to the strength of similarity links between418

classes composing them. A survey of text similarity met-419

rics is conducted in [16]. Practitioners could use any of420

these similarity metrics based on their needs. For our ex-421

perimentation, we selected the cosine similarity metric be-422

cause it is based on the angle between vectors instead of423

points [15]. Following this cosine similarity metric each424

service is considered as a text document, which consists of425

a list of service classes’ names. The similarity between a426

set of services is calculated based on the ration between427

the number of shared classes to the total number of dis-428

tinguished classes.429

4.2.2. Algorithm to identify similar services430

We use a hierarchical clustering technique to gather431

similar services into groups. This hierarchical clustering432

technique consists of two algorithms. The first algorithm433
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Figure 5: Forming potential services by incremental selection of
classes

Input: Potential Services(PS)
Output: Dendrogram (dendrogram)

1 Dendrogram dendrogram = PS;
2 while (|dendrogram| > 1) do
3 c1, c2 =

mostLexicallySimilarNodes(dendrogram);
4 c = newNode(c1, c2);
5 remove(c1, dendrogram);
6 remove(c2, dendrogram);
7 add(c, dendrogram);

end
8 return dendrogram
Algorithm 2: Building Dendrogram of Similar Ser-
vices

aims at building a binary tree, called dendrogram. This434

dendrogram provides a set of candidate clusters by pre-435

senting a hierarchical representation of service similarity.436

Figure 6 shows an example of a dendrogram, where Si437

refers to Servicei. The second algorithm aims at traveling438

through the built dendrogram, in order to extract the best439

clusters, representing a partition.440

To build a dendrogram of similar services, we rely on441

Algorithm 2. It takes a set of potential services as an442

input. The result of this algorithm is a dendrogram rep-443

resenting candidate clusters, similar to Figure 6. The al-444

gorithm starts by considering individual services as initial445

leaf nodes in a binary tree, i.e., the lowest level of the446

dendrogram in Figure 6 (c.f. line 1). Next, the two most447

similar nodes are grouped into a new one, i.e., as a parent448

of them (c.f. lines 3 and 4). For example, in Figure 6, the449

S2 and S3 are grouped. This is continued until all nodes450

are grouped in the root of the dendrogram (c.f. lines 2 to451

7).452

To identify the best clusters, we rely on Algorithm 3453

that uses a depth first search technique to travel through454

the dendrogram. It starts from the dendrogram root node455

Figure 6: An example of a dendrogram

to find the cut-off points (i.e., the highest node holding456

S1, S2, S3, S4, S5, S6 in Figure 6). It compares the sim-457

ilarity of the current node with its children (c.f. lines 4 to458

7). For example, the node holding S1, S2, S3, S4 and the459

node holding S5, S6 in Figure 6. If the current node has460

a similarity value exceeding the average similarity value of461

its children, then the cut-off point is in the current node462

where the children minimize the quality fitness function463

value (c.f. lines 7 and 8). Otherwise, the algorithm recur-464

sively continues through its children (c.f. lines 9 to 11).465

The results of this algorithm are a collection of clusters,466

where each cluster groups a set of similar services (c.f. line467

12).468

Input: Dendrogram(dendrogram)
Output: A Set of Clusters of Potential

Services(clusters)
1 Stack traversal;
2 traversal.push(dendrogram.getRoot());
3 while (! traversal.isEmpty()) do
4 Node father = traversal.pop();
5 Node left = dendrogram.getLeftSon(father);
6 Node right =

dendrogram.getRightSon(father);
7 if similarity(father) > (similarity(left) +

similarity(right) / 2) then
8 clusters.add(father)

9 else
10 traversal.push(left);
11 traversal.push(right);

end

end
12 return clusters

Algorithm 3: Dendrogram Traversal to Identify Clus-
ter of Similar Services

4.3. Identification of one reusable service from similar po-469

tential services470

As previously mentioned, similar services are consid-471

ered as variants of a common one. Thus, from each cluster472
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of similar services, we extract a common service which is473

considered as the most reusable compared to the members474

of the analyzed group.475

4.3.1. Method to identify reusable service based on similar476

ones477

Classes composing similar services are classified into478

two types. The first one consists of classes that are shared479

by these services. We call these classes as Shared classes.480

In Figure 7, C3, C4, C8 and C9 are examples of Shared481

classes in the three services belonging to the cluster of482

similar services. The second type is composed of other483

classes that are diversified between the services. These are484

called as Non-Shared classes. C1, C2, C5, C6, C7 and485

C10 are examples of Non-Shared classes in the cluster of486

similar services presented in Figure 7.487

As Shared classes are identified in several SPVs to be488

part of one service, we consider that Shared classes form489

the core of the reusable service. Thus, C3, C4, C8 and C9490

should be included in the service identified from the cluster491

presented in Figure 7. However, these classes may not492

form a correct service following our quality fitness function.493

Thus, some Non-Shared classes need to be added to the494

reusable service, in order to keep the service quality high.495

The selection of a Non-Shared class to be included in the496

service is based on the following criteria:497

• The quality of the service obtained by adding a Non-498

Shared class to the core ones. This criterion is to499

increase the service quality. Therefore, classes max-500

imizing the quality fitness function value are more501

preferable to be added to the service.502

• The density of a Non-Shared class in a cluster of sim-503

ilar services. This refers to the occurrence ratio of504

the class compared to the services of this group. It505

is calculated based on the number of services includ-506

ing the class to the total number of services com-507

posing the cluster. We consider that a class having508

a high density value contributes to build a reusable509

service because it keeps the service belonging to a510

larger number of SPVs. For example, in Figure 7, the511

densities of C2 and C1 are respectively 66% (2/3)512

and 33% (1/3). Thus, C2 is more preferable to be513

included in the service than C1, as C2 keeps the514

reusable service belonging to two SPVs, while C1515

keeps it belonging only to one SPV.516

As results of the clone-and-own approach, classes of517

identified services could have different implementations across518

various SPVs. These different implementations of the same519

cloned class across SPVs should be merged by creating520

one suitable and representative abstraction that allows the521

variability configuration, e.g., using the preprocessing an-522

notations. In literature, we identify potential approaches523

to be reused for merging the several implementations of524

cloned methods/classes [17] [18].525

Figure 7: An example of a cluster of three similar services

4.3.2. Algorithm to identify reusable service based on sim-526

ilar ones527

Based on the method given in the previous section, an528

optimal solution requires identifying all subsets of a collec-529

tion of classes which represents an NP-complete problem530

(i.e., O(2n)). This algorithm is not scalable for a large531

number of Non-Shared classes (e.g., 10 Non-Shared classes532

need 1024 operations, while 20 classes need 1048576 op-533

erations).534

Therefore, we propose to identify the optimal solu-535

tion only for services with a small number of Non-Shared536

classes. Otherwise, we rely on a near-optimal solution.537

In the following subsections, we discuss two algorithms to538

identify an optimal solution and a near-optimal one re-539

spectively.540

Algorithm providing optimal solution for reusable service541

identification. Algorithm 4 computes an optimal reusable542

service from similar ones, where Q refers to the service543

quality fitness function, Q threshold refers to the prede-544

fined quality threshold and D threshold refers to the pre-545

defined density threshold. First, for each cluster of similar546

services, we extract all candidate subsets of classes among547

the set of Non-Shared ones (c.f. lines 1 to 8). Then, the548

subsets that reach a predefined density threshold are only549

selected (c.f. line 12). The density of a subset is the aver-550

age densities of all classes in this subset. Next, we evaluate551

the quality of the service formed by grouping core classes552

with classes of each subset resulting from the previous step553

(c.f. lines 13 and 14). Thus, the subset maximizing the554

quality value is grouped with the core classes to form the555

reusable service. Only services with a quality value higher556

than a predefined threshold are retained (c.f. lines 15 to557

17).558

Algorithm providing near-optimal solution for reusable ser-559

vice identification. We defined a heuristic algorithm pre-560
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Input: Clusters of Services(clusters)
Output: A Set of Reusable Services(RC)

1 for each cluster ∈ clusters do
2 shared = cluster.getFirstservice().getClasses;
3 allClasses = ∅;
4 for each service ∈ cluster do
5 shared = shared ∩ service.getClasses();
6 allClasses =

allClasses ∪ service.getClasses();
end

7 nonShared = allClasses− shared;
8 allSubsets = generateAllsubsets(nonShared);
9 reusableService = shared;

10 bestService = reusableService;
11 for each subset ∈ allSubsets do
12 if Density(subset) > D threshold then
13 if Q(reusableService ∪ subset)) >

Q(bestService) then
14 bestService =

reusableService ∪ subset;
end

end

end
15 if Q(bestService) >= Q threshold then
16 add(RC,bestService);

end

end
17 return RC

Algorithm 4: Optimal Solution for Reusable Service
Identification

sented in Algorithm 5, where Q refers to the quality fit-561

ness function, Q threshold refers to the predefined quality562

threshold and D threshold refers to the predefined density563

threshold. First of all, Non-Shared classes are evaluated564

based on their density. The Classes that do not reach a565

predefined density threshold are rejected (c.f. lines 9 to566

11). Then, we identify the greater subset that reaches a567

predefined quality threshold when it is added to the core568

classes. To identify the greater subset, we consider the569

set composed of all Non-Shared classes as the initial one570

(c.f. lines 9 to 11). This subset is grouped with the core571

classes to form a service. If this service reaches the pre-572

defined quality threshold, then it represents the reusable573

service (c.f. lines 12 to 15). Otherwise, we remove the574

Non-Shared class that reduces the quality of the service575

when this Non-Shared class is added to the correspond-576

ing core classes (c.f. line 17). We do this until a service577

reaching the quality threshold or the subset of Non-Shared578

classes becomes empty (c.f. line 12).579

4.4. Identification of object-oriented methods correspond-580

ing to service interfaces581

A service is used based on its provided and required582

interfaces. For object-oriented services, the interaction583

Input: Clusters of Services(clusters)
Output: A Set of Reusable Services(RC)

1 for each cluster ∈ clusters do
2 shared = cluster.getFirstservice().getClasses;
3 allClasses = ∅;
4 for each service ∈ cluster do
5 shared = shared ∩ service.getClasses();
6 allClasses =

allClasses ∪ service.getClasses();
end

7 nonShared = allClasses− shared;
8 reusableService = shared;
9 for each class ∈ nonShared do

10 if Density(class) < D threshold then
11 nonShared = nonShared - class;

end

end
12 while (|nonShare| > 0) do
13 if Q(reusableService ∪ nonShare) >=

Q threshold then
14 add(RC,reusableservice);
15 break;

16 else
17 removeLessQualityClass(nonShare,

shared);
end

end

end
18 return RC

Algorithm 5: Near-Optimal Solution for Reusable
Service Identification

between the services is realized through object-oriented584

method calls (i.e., method invocations). A service pro-585

vides its services through a set of object-oriented methods586

that can be called by the other services that require func-587

tionalities of this service. Thus, the provided interfaces588

are composed of a set of public methods that are imple-589

mented by classes composing this service. On the other590

hand, required interfaces are composed of methods that591

are invoked by classes of this service and belong to classes592

of other services (i.e., the provided interfaces of the other593

services). The identification of service interfaces is based594

on grouping a set of object-oriented methods into a set of595

service interfaces. We rely on the following heuristics to596

identify these interfaces:597

Object-oriented methods belonging to the same598

object-oriented entities. In object-oriented, meth-599

ods implementing cohesive functionalities are gen-600

erally implemented by the same object-oriented en-601

tities (e.g., object-oriented interface, abstract class602

and concrete class). Therefore, we consider any object-603

oriented entity that groups together a set of methods604

as an indicator of high probability that these meth-605

ods belong to the same service interface. We propose606
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Algorithm 6 to measure how much a set of methods607

M belongs to the same service interface. This algo-608

rithm calculates the size of the greatest subset of M609

which consists of methods that belong to the same610

object-oriented class or interface (c.f. lines 1 to 4).611

Then, it divides the size of the greatest subset by612

the size of M (c.f. line 5) and returns SI as a final613

return value (c.f. line 6).614

Input: A Set of Methods(M), a Set of
Object-Oriented Entities(OOI)

Output: Same Object-Oriented Entity Value
(SI)

1 sizeGreatest =
|M ∩OOI.getFirstInterface().getMethods()|;

2 for each interface ∈ OOI do
3 if |M ∩ interface.getMethods()| >

sizeGreatest then
4 sizeGreatest =

|M ∩ interface.getMethods()|;
end

end
5 SI = sizeGreatest / M.size();
6 return SI
Algorithm 6: Same Object-Oriented Entity (SI)

Object-oriented method cohesion. Methods access615

the same set of attributes to participate to provide616

the same services. Thus, cohesive methods have617

more probability to belong the same service interface618

than those that are not. To measure how much a set619

of methods is cohesive, we use the Loose Class Co-620

hesion (LCC) metric [14]. We select LCC because it621

measures direct and indirect dependencies between622

methods. Please refer to [14] for more details about623

LCC.624

Method lexical similarity. The lexical similarity of625

methods probably indicates to similar implemented626

services. Therefore, methods having a lexical sim-627

ilarity likely belong to the same interface. To this628

end, we utilize Conceptual Coupling metric [19] to629

measure methods lexical similarity based on the se-630

mantic information obtained from the source code,631

encoded in identifiers and comments.632

Method correlation of usage: when a service provides633

functionalities for another service, it provides them634

through the same object-oriented entities (e.g., object-635

oriented interface, abstract class and concrete class).636

Thus, methods that have got called together by object-637

oriented classes the other services are likely to belong638

to the same service interface. To this end, we pro-639

pose Algorithm 7 to calculate the Correlation of Us-640

age (CU ) of a given set of methods M. It is based641

on the size of the greatest subset of M that has got642

called together by the same service (c.f, lines 2 to 4).643

The final value of CU is the percentage between the644

identified size of the greatest subset and the size of645

M (c.f, line 5).646

Input: A Set of Methods(M), a Set of
services(Services)

Output: Correlation of Usage Value(CU)
1 sizeGreatest = |M ∩

Services.getFirstservice().getCalledMethods()|;
2 for each service ∈ Services do
3 if |M ∩ service.getCalledMethods()| >

sizeGreatest then
4 sizeGreatest =

|M ∩ interface.getCalledMethods()|;
end

end
5 CU = sizeGreatest / M.size();
6 return CU

Algorithm 7: Correlation of Usage (CU)

According to these heuristics, we define a fitness func-647

tion for measuring the quality of a group of methods M to648

form a service interface. We rely on a set of parameters649

(i.e., λi) to allow architects to weight each characteristic650

as needed. The values of these parameters are situated in651

[0-1]. The selection of values of these parameters is based652

on the knowledge of architects about the SPVs. Further-653

more, architects could use these parameters to analyze the654

relationships between each characteristic and the quality655

of the obtained service interfaces by changing the values of656

parameters. Once architects identify the best values based657

on a set of test cases of service interfaces, they could gen-658

eralize these values to the remaining of the SPVs in the659

same family.660

Interface(M) =
1∑
i λi
·(λ1 ·SI(M)+λ2 ·LCC(M)+λ3·661

CS(M) + λ4 · CU(M)) (5)662

Based on this fitness function, we use a hierarchical663

clustering technique to partition a set of public methods664

into a set of clusters, where each cluster is considered as665

a service interface. The hierarchical clustering technique666

constructs a dendrogram of similar public methods like667

Algorithm 2. Then, it extracts the best clusters of public668

methods using a depth first search technique similar to669

Algorithm 3.670

5. Evaluation671

5.1. Data collection672

To evaluate ReSIde, we collect three sets of software673

product families that are Mobile Media2 [20], Health Watcher3,674

and ArgoUML4 [21].675

2Available at http://homepages.dcc.ufmg.br/∼figueiredo/spl/icse08
3Available at http://ptolemy.cs.iastate.edu/design-

study/#healthwatcher
4Available at http://argouml-spl.tigris.org/
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Mobile Media (MM) is a SPL that manipulates music,676

video and photo on mobile phones. It is implemented us-677

ing Java. In our experimentation, we considered, as SPVs,678

a set of 8 products derived by [20] as representative of679

all features of the SPL. The average size of a product is680

43.25 classes. Health Watcher product variants imple-681

ment a set of web-based software applications that offers682

services related to managing health records and customer683

complaints. We consider 10 SPVs written in Java. On av-684

erage, each SPV is composed of 137.6 classes. ArgoUML685

(AL) is a UML modeling tool. It is developed in Java as a686

software product line. We applied ReSIde on 9 products687

generated and used in [22]. Each SPV contains 2198.11688

classes on average.689

Our method to select these software families is based690

on four factors. First, we consider covering different sizes691

of software families to test the scalability of ReSIde with692

different system sizes; MM as a small-scale software (43.25693

classes per SPV), HW as medium-scale software (137.6694

classes per SPV), and AL as a large-scale one (2198.11695

classes per SPV). Second, we consider software families696

that were already used by other researchers in the domain697

of reverse engineering of software product lines such as698

[23, 22, 24, 25]. Third, the suitability of the case studies to699

identify services that were reused in the implementation of700

several SPVs. Fourth, the availability of their source code.701

5.2. Research questions and their methodologies702

We aim to answer four Research Questions (RQs) as703

follows.704

5.2.1. RQ1: What are good threshold values to identify705

potential services from each SPV?706

Goal. As the selection of threshold values affects both the707

quality and the number of the identified potential services,708

the aim of this RQ is to help software architects selecting709

proper threshold values to consider a group of classes form-710

ing a potential service or not.711

Methodology. To support software architects choosing a712

proper threshold value, we assign the quality threshold713

values situated in [0%, 100%]. The goal of changing the714

threshold values is to explicitly identify the general rela-715

tionship between the number of identified services and the716

selected threshold values. To do this, we need to explore717

all the values of the interval [0%-100%]. To segment this718

interval, we can start from 0% and increment using any719

value (1%, 1.55%, 5%, 8,09%, 23%, etc.). We rely on two720

strategies applied successively.721

The first strategy is to explore the threshold values based722

on a 5% increment. We consider that 5% is a fair empirical723

increment for two reasons. First it provides a finite num-724

ber of values that are distributed uniformly compared to725

this interval (i.e. 0%, 5%, 10%, 15%... 100%). Second, the726

variation of values obtained based on successive increments727

allows the interpolation of other unconsidered values. As728

soon as we identify an interesting interval based on the729

number of identified services and the maximum value of730

the quality fitness function, we apply the second strategy731

which consists of exploring the values in this interval by a732

finer increment which is 1. We show the impact of thresh-733

old values on the average number of identified services for734

each software family of SPVs.735

5.2.2. RQ2: What potential services implement similar736

functionalities across different SPVs?737

Goal. The goal of this RQ is to study the characteristics738

of potential services identified as similar across SPVs.739

Methodology. We applied the second step of ReSide to740

cluster similar potential services based a hierarchical clus-741

tering technique. For each case study, we identify the num-742

ber of clusters, the average number of services in the identi-743

fied clusters, the average number of Shared classes in these744

clusters, the average value of the Functionality character-745

istic, the average value of the Self-containment character-746

istic, and the average value of Composability characteristic747

of the Shared classes in these clusters.748

5.2.3. RQ3: What are the reusable services identified based749

on ReSide?750

Goal. The aim of this RQ is to to study the characteris-751

tics of reusable services identified from clusters of similar752

potential services.753

Methodology. We rely on the third step of ReSide to ex-754

tract one reusable service from each cluster of potential755

services. For each case study, we identify the number of756

the identified services, the average service size in terms of757

number of included classes, and the average value of the758

Functionality, the Self-containment, and the Composabil-759

ity of the identified services.760

5.2.4. RQ4: What is the reusability of services identified761

based on ReSide?762

Goal. This RQ evaluates the improvement of the reusabil-763

ity of services identified based on the analysis several SPVs764

using ReSide compared to the reusability of services iden-765

tified based on the analysis of singular software.766

Methodology. To validate the reusability of services iden-767

tified by the ReSIde approach, we propose a validation768

process presented in Figure 8. This process consists of769

three main steps as follows:770

1. Dividing SPVs into K parts: To prove that our771

validation can be generalized for other independent772

SPVs, we depend on K-fold cross validation method773

[15]. In data mining, K-fold is widely used to vali-774

date the results of a mining model. The main idea775

is to evaluate the model using an independent data776

set. Thus, K-fold divides the data set into two parts:777

train data, and test data. On the one hand, train778

data are used to learn the mining model. On the779
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Figure 8: The process of validating the reusability of services identified by ReSIde

other hand, test data are then used to validate the780

mining model. To do so, K-fold divides the data set781

into K parts. The validation is applied K times by782

considering K-1 parts as train data and the other783

one as test data. We validate ReSIde by dividing784

the SPVs into K parts. Then, we only identify ser-785

vices from the train SPVs (i.e., K-1 parts). Next, we786

validate the reusability of these services in the test787

SPVs. We evaluate the result by assigning 2, 4 and788

8 to the K at each run of the validation.789

2. Identifying services of train SPVs: To compare790

the reusability of services identified based on the791

analysis of multiple SPVs versus singular SPV, we792

identified services using the ReSIde approach and a793

traditional service identification approach that ana-794

lyzes only singular SPVs independently. We selected795

Adjoyan et al. approach [6] due to the availability of796

the tool of its implementation.797

3. Calculating the reusability of services in test798

SPVs: We consider that the reusability of a service799

is evaluated based on the number of SPVs that the800

service can be reused in. For a collection of SPVs,801

the reusability is calculated as the ratio between the802

number of SPVs that can reuse the service to the803

total number of SPVs in the test part. A service804

can be reused in a SPV if it provides functionalities805

required by this SPV. We analyze the functionalities806

of each SPV in the test part to check if an identified807

service provides some of these functionalities. The808

functionalities required by a SPV are identified based809

on the potential services extracted from this SPV810

using the first step of ReSIde in Section 4.3. The811

validation results are calculated based on the average812

of all K trails.813

5.3. Results814

5.3.1. RQ1: What are good threshold values to identify815

potential services from each SPV?816

The results obtained from MM, HW and AL case stud-817

ies are respectively shown in Figure 9, Figure 10 and Fig-818

ure 11, where the values of the threshold are at the X-axis,819

and the average numbers of the identified services in a SPV820

are at the Y-axis.821

The results show that the number of the identified ser-822

vices is lower than the number of classes composing the823

SPVs, for low threshold values. The reason behind that824

is the fact that some of the investigated classes produce825

the same service. For example, InvalidPhotoAlbumName-826

Exception and InvalidImageFormatException produce the827

same service, when they are considered as the core for828

identifying potential services.829

Moreover, the results show that the number of identi-830

fied services is the same for all quality threshold values in831

this interval [0%, 55%] for the three case studies. This832

means that selecting a value in this interval does not make833

sense as it does not make a distinction between services834

having diverse quality values.835
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Figure 9: Changing threshold value to extract potential services from
MM

The results of incrementing 5% each time allow us to836

identify the interesting intervals as [65%, 70%], [75%, 80%]837

and [80%, 85%] respectively for MM, HW and AL case838

studies. Thus, any value in these intervals can be selected839

as a threshold to be considered respectively for each case840

study. We rely on the number of functionalities of the841

analyzed SPVs to select threshold values in these inter-842

vals. We use the number of classes of SPVs as indica-843

tors for the number of functionalities implemented in the844

SPVs (direct proportion). We assign 70%, 77% and 83%845

as threshold values respectively for MM, HW and AL case846

studies. Table 1 shows the detail results obtained based847

on these threshold values. It presents the total number of848

potential services (TNOPS) identified based on the analy-849

sis of all SPVs, the average size of these services (ASOS) in850

terms on number of included classes, the average value of851

the Functionality characteristic (AF), the average value of852

the Self-containment characteristic (ASC) and the average853

value of the Composability characteristic (AC).854

Figure 12 presents an example of a potential service855

extracted from AL. This service is identified by considering856

GoClassToNavigableClass as the core class. The quality857

fitness function reaches the peak value when we add 18858

classes to this identified service. We find that classes added859

later reduce the quality of the identified service. Therefore,860

we reject classes added after the 18th class to be part of861

this identified service.862

5.3.2. RQ2: What potential services implement similar863

functionalities across different SPVs?864

Table 2 presents the results of the process of group-865

ing similar potential services into clusters. For each case866

study, it shows the number of clusters (NOC), the aver-867

age number of services in the identified clusters (ANOC),868

Figure 10: Changing threshold value to extract potential services
from HW

Table 1: The results of potential services extraction

Family Name TNOPS ASOS AF ASC AC
MM 24.50 6.45 0.56 0.71 0.83
HW 96.6 5.55 0.61 0.76 0.99
AL 811 11.38 0.64 0.83 0.89

TNOPS : total number of potential services.
ASOS : average size of potential services in classes.
AF : average value of the Functionality characteristic of potential services.
ASC : average value of the Self-containment characteristic of potential services.
AC : average value of the Composability characteristic of potential services.

the average number of Shared classes in these clusters869

(ANSC), the average value of the Functionality charac-870

teristic (AFS), the average value of the Self-containment871

characteristic (ASCS), and the average value of Compos-872

ability characteristic of the Shared classes (ACS) in these873

clusters. The results show that SPVs sharing a bunch of874

similar services. For instance, each SPV of MM has 24.5875

services in average. These services are grouped into 42876

clusters. This means that each SPV shares 5.38 services877

with the other SPVs, in average. Thus, a reusable service878

can be identified from these services. In the same way, AL879

SPVs share 5.26 services. Table 3 shows an example of880

a cluster of similar services identified from AL case study,881

where X refers to that a class is a member in the corre-882

sponding SPV. In this example, we note that the services883

have 5 Shared classes. These classes have been identified884

to be part of the same service in 9 SPVs of AL. Thus,885

they can be considered as core classes to form a reusable886

service that is reused in the 9 SPVs.887
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Figure 11: Changing threshold value to extract potential services
from AL

Table 2: The results of service clustering
Family Name NOC ANOC ANSC AFS ASCS ACS

MM 42 5.38 5.04 0.59 0.71 0.89
HW 504 6.17 5.33 0.62 0.74 0.99
AL 325 5.26 8.67 0.57 0.87 0.93

NOC : the number of clusters.
ANOC : the average number of services in the identified clusters.
ANSC : the average number of Shared classes in these clusters.
AFS : the average value of the Functionality of the Shared classes in the identified clusters.
ASCS : the average value of the Self-containment of the Shared classes in the identified clusters.
ACS : the average value of Composability of the Shared classes in the identified clusters.

5.3.3. RQ3: What are the reusable services identified based888

on ReSide?889

Table 4 summarizes the final set of reusable services890

identified using ReSIde. Based on our experimentation, we891

assign 50% to the density threshold value. For each prod-892

uct family (i.e., a set of SPVs), we present the number of893

the identified services (NOIS), the average service size in894

terms of number of included classes (ASS), and the aver-895

age value of the Functionality (AF), the Self-containment896

(ASC), and the Composability (AC) of the identified ser-897

vices. The results show that some of the identified clus-898

ters do not produce reusable services. For instance, in899

Mobile Media, the 42 clusters produce only 39 services.900

This means that three of the clusters are not able to form901

reusable services. The reason behind that is one of the902

following two situations. The first one is that the selec-903

tion of threshold density causes to remove classes that are904

important to constitute the service, and hence, the service905

was rejected because it did not exceed the quality thresh-906

old value. The second one is that the produced service907

is already identified from another cluster, therefore, the908

Figure 12: An instance of a potential service extracted from AL case
study

Table 3: An instance of a cluster of similar potential services in AL

Class Name

SPV No.

1 2 3 4 5 6 7 8 9

ArgoEventTypes X X X X X X X X X
JWindow X X X X X X X X X
TabFigTarget X X X X X X X X X
FileConstants X X X X X X X X X
OclAPIModelInterpreter X X X X X X X X X
StreamSource X X X X X
SortedListModel X X X X X
BooleanSelection2 X X X X

service is removed to avoid the redundancy.909

Table 4: The final set of identified reusable services.

Family Name NOIS ASS AF ASC AC
MM 39 5.61 0.58 0.74 0.90
HW 443 6.90 0.63 0.75 0.99
AL 324 9.77 0.61 0.84 0.84

NOIS : the number of the identified reusable services.
ASS : the average size of identified reusable services in terms of number of included classes.
AF : the average value of the Functionality of identified reusable services.
ASC : the average value of the Self-containment of identified reusable services.
AC : the average value of the Composability of identified reusable services.

Table 5 shows examples of a set of reusable services910

that are identified based on the analysis of Mobile Me-911

dia. Where, NOV refers to the number of SPVs that con-912

tain the service, NOC represents the number of classes913

that form the service. S, A and C respectively represent914

the Functionality, the Self-containment, and the Compos-915

ability of each service. As it is shown in Table 5, the916

second service provides two functionalities, which are Add917

Constants Photo Album, and Count Software Splash Down918

Screen. The former one deals with adding a photo to an919
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album. The letter is dedicated to the splash screen service.920

Table 5: Some services
Description of the functionalities NOV NOC S A C

New Constants Screen Album Image 6 6 0.59 0.75 0.94
Add Constants Photo Album

8 10 0.57 0.75 0.89
Count Software Splash Down Screen
Base Image Constants Album Screen Accessor List

6 9 0.67 0.50 0.85
Controller Image Interface Thread

NOV : the number of SPVs that contain the services.
NOC : the number of classes that form the services.
F : the value of the Functionality characteristic of the services.
S : the value of the Self-containmentcharacteristic of the services.
C : the value of the Composability characteristic of the services.

5.3.4. RQ4: What is the reusability of services identified921

based on ReSide?922

The results obtained from MM, HW and AL case stud-923

ies are respectively presented in Figure 13, Figure 14 and924

Figure 15. These results show that the reusability of the925

services which are identified from a collection of similar926

software is better than the reusability of services which927

is identified from singular software. We note that the928

reusability is increased when the number of K is increased.929

The reason is that the number of train SPVs is increased930

compared to the test SPVs. For example, there is only one931

test SPV when K=8. We note that the difference between932

the reusability results of the two approaches is increased933

as well as the number of train SPVs is increased.934

The slight difference between the reusability results for935

small K comes from the nature of our case studies, where936

these case studies are very similar. Consequently, the re-937

sulting services are closely similar. In other words, there938

are many groups of similar services containing exactly the939

same classes. This yields a reusable service that is identi-940

cal to cluster services. Therefore, the reusability has the941

same value for all of these services. However, ReSIde re-942

mains outperforming the traditional service identification943

approach proposed by Adjoyan et al. [6]. In Table 5.3.4,944

we provide a conceptional comparison between the ReSide945

and Adjoyan approaches based on seven attributes.946

6. Discussion947

6.1. Deployment of the identified services948

ReSide currently reverse engineers the structural im-949

plementation of reusable services in terms of groups of950

object-oriented classes. To complete the reengineering to951

SOA, these groups of classes need to be transformed and952

packaged based on existing service-oriented models. There-953

fore, we plan in our near future work to extend ReSide954

where reusable web services (e.g., generate WSDL files)955

and REST services can be generated from these groups of956

clusters identified in this paper. In this context, we need957

to deal with direct dependencies between different services,958

exception handling of Java programs and the instantiation959

of services.960

Figure 13: The results of reusability validation of MM services

Figure 14: The results of reusability validation of HW services

6.2. The adaption of our approach for SPVs that already961

applied SOA962

Although our approach is designed for object-oriented963

SPVs, it can be adapted for SPVs that already applied964

SOA from the start. This adaptation is based on ignoring965

the first step of our approach (i.e., Identification of Po-966

tential Services in Each SPV) where we identify a set of967

services from the object-oriented implementation of each968

SPV. This means that we provide as input for the second969

step of our approach the already implemented services cor-970

responding to the SOA of SPVs.971

6.3. Threats to validity972

ReSIde is concerned by two types of threats to validity.973

These are internal and external.974

6.3.1. Threats to internal validity975

There are three aspects to be considered regarding the976

internal validity. These are as follows.977
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Table 6: Comparisons between ReSide and Adjoyan’s approaches
Attributes ReSide approach Adjoyan’s approach

Goal Service identification Service identification
Input artifacts Multiple software product variants Single software product
Target development paradigm Object-oriented Object-oriented
Quality metrics Structural and co-existence together dependencies Structural dependencies
Used Algorithms Authors’ defined heuristic and clustering algorithms Clustering algorithm
Service interface identification Yes No
Output Clusters of classing corresponding to services Clusters of classing corresponding to services

Figure 15: The results of reusability validation of AL services

1. The input we used to evaluate our approach are Ab-978

stract Syntax Trees (ASTs) of the analyzed SVPs.979

These ASTs obtained based on Eclipse Java Devel-980

opment Tools5 (JDT) API reflect static dependen-981

cies between source code entities. This means that982

all dependencies in the source code will be equally983

considered regardless if they are really existed or not984

compared to the program execution scenarios. As985

dependencies between source code entities are used986

to compute the value of the fitness function that987

evaluates the quality of clusters of classes to form988

services, then the precision of the identified services989

can be impacted. I.e., the fitness function may con-990

sider some dependencies that are not materialized in991

the program execution scenarios.992

Also, the ASTs do not consider polymorphism and993

dynamic binding. Consequently some dependencies994

are not captured (e.g., Java reflection dependencies).995

This impacts the recall of the identified services.996

2. We use a hierarchical clustering algorithm to group997

similar services. We use this hierarchical clustering998

algorithm because it does not need to specify the999

number of clusters in advance as we do not know1000

the number of services to be identified in advance.1001

However, it provides a near optimal solution of the1002

partitioning. Other grouping techniques may pro-1003

vide more accurate solutions, such as search-based1004

5https://www.eclipse.org/jdt/

algorithms. This will be a future extension of Re-1005

SIde to implement simulated annealing and genetic1006

algorithms.1007

3. Due to the lack of models that measure the reusabil-1008

ity of object-oriented services, we propose our own1009

empirical measurement to validate the reusability of1010

the identified services. This can threat the reusabil-1011

ity validation results.1012

6.3.2. Threats to external validity1013

There are two aspects to be considered regarding the1014

external validity. These are as follows:1015

1. ReSIde is experimented via SPVs that are imple-1016

mented by Java. As other object-oriented languages1017

(e.g., C++, C#) include other concepts than Java1018

(e.g., templates and preprocessor directives in C++),1019

we need to develop new parsers to handle these new1020

concepts properly to allow ReSide to work with these1021

other languages.1022

2. Only three case studies have been collected in the ex-1023

perimentation (Mobile Media, Health Watcher and1024

ArgoUML). However these are used in several re-1025

search papers that address the problem of migrat-1026

ing SPVs into software product line. On average,1027

the selected case studies obtained the same results.1028

We do not claim that our results can be generalized1029

for other similar case studies without testing ReSIde1030

with a large number of case studies. This will be a1031

logical extension of our work.1032

6.4. Research implications1033

As research implication, we find that services identified1034

based on the analysis of multiple SPVs are more reusable1035

than ones identified from singular software. We can gener-1036

alize this conclusion to all domain of software reuse. E.g.,1037

when a collection of SPVs is available, it will be suitable to1038

recover reusable entities (e.g., components, microservices,1039

modules) by analyzing commonality and variability across1040

these SPVs.1041

6.5. Practical implications1042

As it is mentioned in the motivation of the paper, SOA1043

improves the management of reuse and maintenance of1044

cloned SPVs. However, it provides limited customizability1045

of services as they are used as black-boxes. Furthermore,1046
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the performance of the identified services may be nega-1047

tively impacted as the service technologies add communi-1048

cation layers between services. This impact can be ampli-1049

fied if the identified services rely on heavy data exchange.1050

The security challenge maybe emerged if the identified ser-1051

vices are going to be accessed by third-party applications.1052

7. Related work1053

In this section, we discuss four research areas crosscut-1054

ting with ReSIde. These are service identification, com-1055

ponent identification, software product line architecture1056

recovery and feature identification research areas. We de-1057

cide to also include the latter three research areas because1058

we find that they share with service identification similar1059

input artifacts (e.g., source code) and technical analysis1060

processes (e.g., reverse engineering, clustering algorithm),1061

but with different conceptual identification goals (i.e., ser-1062

vice vs component vs feature).1063

7.1. Service identification1064

Several service identification approaches have been pro-1065

posed to identify services based on the analysis of object-1066

oriented software [6, 7, 8, 9]. According to the life cycle of1067

service identification approaches, we classify approaches1068

presented in the literature based on four axes; the goal,1069

the input, the applied process and the resulting output1070

of service identification approaches. In our classification,1071

we select approaches based on two criteria. The first one1072

focuses on the approaches that are frequently cited since1073

they are considered as the most known approaches pre-1074

sented in the state-of-the-art. The second one is related to1075

the comprehension of the classification axes. This means1076

that we select approaches that cover all of the classifica-1077

tion axes to give concrete examples of these classification1078

axes.1079

The goal of an identification approach can be: under-1080

standing, reuse, construction, evolution, analysis or man-1081

agement [26]. Software understanding is supported by pro-1082

viding a high level of abstraction describing the system1083

structure. Reuse is supported by providing a coarse-grain1084

software entities that can be easily decoupled from the sys-1085

tem and deployed in another one. Construction is guided1086

by explaining how software components interact with each1087

other through their interfaces. A better comprehension of1088

the outcome changes is provided to software maintainers.1089

Thus, they can be more precise in estimating cost of mod-1090

ifications of the software evolution. Software analysis is1091

enriched by understanding the dependencies provided by1092

software architectures. Managing the development tasks1093

get success, when a clear view of the system structure is1094

provided [26].1095

The input of a service identification approach can be1096

source codes [6, 27, 7, 28, 29], data bases [30, 31, 32], exe-1097

cution and log traces [33, 34, 35], business process models1098

[36, 37], knowledge of human expertises [27, 38], docu-1099

mentations [39, 40, 41, 42] or a combination of these input1100

artifacts [29, 43, 33].1101

The process of service identification approaches aims to1102

cluster elements of input artifacts into services. Existing1103

approaches uses several algorithm including clustering al-1104

gorithm, genetic algorithm [27, 44], Formal Concept Anal-1105

ysis [45, 32, 46] or user-defined heuristics [27, 8]. These1106

algorithms rely on various quality characteristics in their1107

fitness functions to maximize the service quality of iden-1108

tified clusters. Such quality characteristics are loose cou-1109

pling [6, 27, 28, 47, 40, 43, 48, 49, 41], cohesion [6, 27, 28,1110

47, 40, 43, 48, 49, 37], service granularity level [47, 40, 41,1111

43, 48, 49], self-containment [6, 41],composability [6] and1112

interoperability [42].1113

The output of these service identification approaches1114

is normally clusters of classes where each cluster repre-1115

sents the implementation of one service. Some approaches1116

propose to package these clusters to form web service [6],1117

REST services [7, 50] or microservices [8, 51, 49].1118

Nevertheless all of these existing service identification1119

approaches perform the identification based on the analy-1120

sis of only one single software product. Services are iden-1121

tified as group of object-oriented elements that have strong1122

object-oriented dependencies without considering the global1123

reusability of these elements together in other software1124

products. Therefore, the identified services may be useless1125

in other software products and consequently their reusabil-1126

ity is not guaranteed. In our evaluation results where we1127

compare our approach with a traditional one, we find that1128

the reusability of services identified by considering multi-1129

ple software products outperforms the reusability of ser-1130

vices identified using the traditional service identification1131

approaches.1132

7.2. Component identification1133

Following the definitions of services [52] [53] [54] [55]1134

[56] and software components [57]6, [58]7 [59]8, we find1135

that services are very similar to software components in1136

terms of their characteristics (loose coupling, reusability,1137

autonomy, composability, etc.). However, we can distin-1138

guish between services and components based on two as-1139

pects: the granularity level and the deployment technolo-1140

gies and models. Services start at higher level of abstrac-1141

tions compared to components. A service can be a part1142

of a business process (at the requirement level), an archi-1143

tectural element (at the design level) and a function (at1144

the implementation level). Components appear only at1145

the design level and the implementation level in terms of1146

6A component is “abstract, self-contained packages of functional-
ity performing a specific business function within a technology frame-
work. These business components are reusable with well-defined
interfaces”[57].

7A component is “a unit of composition with contractually spec-
ified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to compo-
sition by third parties”[58].

8A component is “a software element that (a) encapsulates a
reusable implementation of functionality, (b) can be composed with-
out modification, and (c) adheres to a component model”[59].
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architectural elements and functions. Services and compo-1147

nents are different in terms of deployment technologies and1148

models that are used to technically implement them. For1149

examples, services can be web-services [60], micro-services1150

[61], REST services [62], etc., while components can be1151

OSGi [63], Fractal [64], SOFA [65], etc. These have varia-1152

tions in their specification that make the implementation1153

of services and components varied and respectively their1154

provided and required interfaces.1155

Therefore, we can see that service identification and1156

component identification are very similar in terms of iden-1157

tifying architectural elements that represent main reusable1158

functionalities, but they are different in the way of pack-1159

aging these functionalities following SOA or component-1160

based models and deployment technologies (e.g., REST1161

services vs OSGi components).1162

Many approaches were proposed to identify compo-1163

nents from object-oriented software such as [66, 67, 68, 69,1164

70, 71]. These approaches mined components from single1165

software that limits the reusability of identified compo-1166

nents.1167

In [66], Kebir et al. extracted the component-based ar-1168

chitecture based on partitioning classes into clusters cor-1169

responding to components. The partitions are based on1170

static code dependencies.1171

Mishra et al. [67] also extracted the component-based1172

architecture. Components are extracted based on informa-1173

tion realized in use cases, sequence diagrams, and class di-1174

agrams. Unlike source code, sequence diagrams, use cases,1175

and class diagrams are not always available. Hamza [72]1176

identified components from requirements and use cases us-1177

ing formal concept analysis. He focused on the component1178

stability rather than the component reusability.1179

Allier et al. [68] depended on dynamic dependencies1180

between software classes to extract a component-based ar-1181

chitecture. They relied on the use-cases to identify the1182

execution trace scenarios. Classes that frequently occur in1183

the execution traces are grouped into a component.1184

Liu et al. [73] identified interfaces of identified compo-1185

nents. Similar to our approach, they defined a component1186

interface as a group of methods belonging to the cluster of1187

classes of an identified component. They relied on process1188

mining tools to analyze the direct connections between the1189

clusters of classes.1190

7.3. Software product line architecture identification1191

SPLA recovery approaches are similar to our approach1192

in terms of the analysis of the variability between software1193

products. However, compared to our service identifica-1194

tion approach, they are different in their goal which is the1195

identification of one architecture model that describes the1196

design of a set of software products in the same family of1197

software product line [74] based on variation points and1198

variants between architectural-elements [75, 76, 77]. In1199

other words, their focus is more on the understandability1200

of the design of the family of products than the reusability1201

of identified services.1202

Technically, SPLA recovery approaches identify component-1203

based architecture (not potential reusable services) from1204

each software product as disjoint clusters of classes that1205

describe the system structure of this product. Then, they1206

analyze the variability between the recovered architectures1207

to identify variation points and variants using clone de-1208

tection algorithm [78, 79, 80], clustering algorithm [25],1209

or user-defined heuristics [81, 82]. They identify differ-1210

ent aspects of SPLA such as mandatory components [25],1211

optional components [25], component variability [78, 81,1212

25, 79, 82, 80], variability dependencies between different1213

components [25, 79, 82], and feature model of architecture1214

variability [25].1215

7.4. Feature identification1216

The distinguish between service identification and fea-1217

ture identification approaches comes from the differences1218

between the concepts of a service and a feature. We have1219

different goals and details processes to achieve these goals.1220

Following Kang et al [83], a feature is defined as a non-1221

structural element that provides user visible aspects. On1222

the other hand, a service is a structural (architectural) el-1223

ement that could implement either user visible or invisible1224

aspects. Furthermore, services and features belong to var-1225

ious abstraction levels. Features abstract software require-1226

ments at a high level (e.g., requirement level), and services1227

are architectural elements at the design level. Please note1228

that services can be used to represent the implementation1229

of features at the design level. The mapping model could1230

be many-to-many, many-to-one, one-to-many or one-to-1231

one depending on the software engineers’ decisions. Tech-1232

nically, features does not have any interfaces that represent1233

the interaction between each others, rather than service1234

interfaces, required and provided ones.1235

Feature identification has been investigated by many1236

approaches. These aims to identify program units such as1237

methods, or classes that represent features related only to1238

user visible aspects, and without considering the position1239

of these feature at the design level. Dit et al. [84] provided1240

a survey of feature identification approaches. Features1241

were identified based on the analysis of single software1242

product like [85, 86, 87], or based on the analysis of mul-1243

tiple software products by exploring the commonality and1244

the variability between these products like [88, 89, 90, 91].1245

8. Conclusion1246

In this paper, we presented ReSIde (Reusable Service1247

Identification): an automated approach that identifies reusable1248

services based on the analysis of a set of similar object-1249

oriented SPVs. ReSIde identifies reusable functionalities1250

of cloned codes that can be qualified as services across1251

multiple SPVs based on the analysis of the commonality1252

and the variability between the source code ofthese SPVs.1253

We consider that identifying service based on the analysis1254
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of multiple SPVs provides more guarantee for the reusabil-1255

ity of the identified services, compared to the analysis of1256

singular SPV.1257

ReSIde firstly identifies all potential services from each1258

SPV independently. A potential service is defined based1259

on a group of object-oriented classes identified gradually1260

based on one core class. Groups of classes have quality val-1261

ues exceeding a pre-defined threshold value are considered1262

as potential services. Then, ReSIde explores the common-1263

ality and the variability between the identified potential1264

services to identify ones that are shared between different1265

SPVs. The identification of these shared services is based1266

on a clustering algorithm. From each cluster of services,1267

ReSIde extracts one common service that represents that1268

most reusable and quality-centric service in this cluster.1269

To validate ReSIde, we applied it on three case studies1270

of product variants of three different sizes; 8 products of1271

Mobile Media as a small-scale software (43.25 classes per1272

product), 10 products of Health Watcher as medium-scale1273

software (137.6 classes per product), and 9 products of Ar-1274

goUML as a large-scale one (2198.11 classes per product).1275

The results demonstrated the applicability of ReSIde on1276

the selected three case studies and the capability to iden-1277

tify reusable services that can be existed in multiple SPVs.1278

We proposed an empirical measurement method to eval-1279

uate the reusability of the identified services. The results1280

of this measurement method showed that the reusability1281

of the services identified based on ReSIde is better than1282

the reusability of those identified based on the analysis of1283

singular software product.1284

As future directions, we plan to extend ReSIde to trans-1285

form the object-oriented implementation of identified ser-1286

vices into truly deployable services by making them adhere1287

to one or more SOA models such as Web services or mi-1288

croservices. Also, we want to evaluate the reusability of1289

the identified services based on the human expert knowl-1290

edge.1291
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